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The rescaled range statistical analy$¥%$) is proposed as a method to detect correlations in pseudorandom
number generators used in Monte Carlo simulations. In an extensive test it is demonstrated &g the
analysis provides a very sensitive method to reveal hidden long-run and short-run correlations. Several widely
used and also some recently proposed pseudorandom number generators are subjected to this test. In many
generators correlations are detected and quant{i&iD63-651X%98)06505-2

PACS numbegps): 02.70.Lq, 05.40tj, 02.50—r, 75.40.Mg

I. INTRODUCTION tions until the past few years. However, the rapid develop-
ment of computer hardware and improved simulation algo-
Random numbers are the essential ingredient of all stodthms have caused the demands on the quality of the random
chastic simulations. A great many algorithms in Monte Carlonumber sequences to greatly increase. As a consequence, er-
(MC) simulations and other nonphysical computational fieldg'oneous results have been found in recent high-precision MC
rely crucially on the statistical properties of the random num-calculations. The errors could be related to the use of popular
bers used. High-precision calculations on current computeé? RNGs in combination with some specialized algorithms

hardware typically involve the generation of billions of ran- [9-13 that revealed hitherto undetected correlations in the
dom numbers. pseudorandom sequences.

Today the most convenient and most reliable method of 1S there is a strong need to enlarge the “toolbox™ of

obtaining random numbers in practice is the use of a dete|ngplrlcal tests to gain confidence in recently proposed

ministic algorithm. Such a numerical method produces a seI—DRNGs [14-17 and to check whether traditionally used

- PRNGs are still reliable in modern applications. Any good
quence ofpseudorandom numbe®RNS that mimic the statistical test should have an idiosyncracy for unwanted cor-

. Yelations and detect defects before they show up in an appli-
sible. Usually the pseudorandom number gener@®&NG ;i Recently developed and highly gpecialize% algoritf?r?"ls
is assumedo generate a sequence of independent and ideny, 5y pe sensitive to structural defects in PRNGs that are not
tically distributed - continuousU(0,1) random numbers, eyident in the standard tests. As different tests detect differ-
which means uniformly distributed over the interf@l,1].  ent types of defects it is desirable to develop application
Other distributions can be obtained by transformation methspecific test§18—21] that are especially sensitive to the fea-
ods[1]. Since the state space of the generator is finite, théures of the random numbers that are probed in simulations
sequence of PRNs will be eventually periodic. Therefore, thén current fields of research. However, often this cannot be
expected properties of “true” random variables can only beassessed in advance and the only way to reassure oneself of
approximated. the correctness of a suspiciolgs very importank result is to
True randomnumbers can only be produced by physical perform anin situ testand to repeat the simulation with some
devices that generate events that are principally unpredicdifferent PRNGs. Enlarging the set of test methods therefore
able in advance, such as noise diodesyaray counters. can help to save precious time and to avoid painful recalcu-
However, such devices are inconvenient to use and Marsdations.
glia reported that several commercial products fail standard In Sec. Il a test method is proposed that is applied to a set
statistical tests spectacularf®,3]. An alternative could be of several popular generators described in Sec. Ill. In Sec. IV
the archiving of random numbers of high quality on athe results of the numerical experiments are discussed, illus-
CDROM[2], although such a source is by far not as conve-rating the capability of the test. Following the conclusions in

nient to handle as a simple function call. Sec. V, additional results are tabulated in the Appendixes.
While theoretical tesimethodq4,5], such as the analysis

of the Iatt!ce structuréG] of Ilngar congruential generators, IIl. RESCALED RANGE (R/S) ANALYSIS

are certainly the starting point for constructing a good

PRNG, there is also a strong need for so-cakedpirical In the following | describe a technique for judging the

tests These view the PRNG under consideration as a blackjuality of PRNGs in at least several physically relevant situ-
box and statistically analyze sequences of numbers for varations. It will be demonstrated that the rescaled range statis-
ous types of correlations, regardless of the generatiotical analysis provides an extremely sensitive method for re-
method. There is a large batterysiiindard test§3-5,7,8,2  vealing hidden correlations in PRNGs.

that every candidate to be used in “serious” simulations has As this method is based on general statistical properties
to pass. PRNGs that have succeeded in all of these testxpected for an independent Gaussian process, it should also
seemed to work reliably in apparently all physical simula-be useful as a general tool to test the suitability of a PRNG in
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a wide class of stochastic simulations. In the following it will R’ (7)o 7, (5
be shown that it is especially effective for testing the pres-
ence of dong-run statistical dependence and in cases whergvhereH differs significantly from 1/2. In the context of frac-
such a correlation is present, for estimating its intensity. Irtional Brownian motion[24,26] a Hurst exponent oH
addition, it is shown that alsshort-runcyclic components in  =1/2 corresponds to the vanishing of correlations between
a pseudorandom sequence are easily made evident using th@st and future spatial increments in the record. For
R/S statistic. >1/2 one has persistent behavior, which means a positive
Hydrology is the oldest discipline in which a noncyclic increment for some time in the past will on the average lead
long-run dependence has been reported. In particular, th® a positive increment in the futur@ the increments are
R/S analysis has been invented by HufgR,23 when he distributed symmetrically around zgr&orrespondingly, the
was studying the Nile in order to describe the long-term de<ase ofH<1/2 denotes antipersistent behavior. Thus almost
pendence of the water level in rivers and reservoirs. Later higll long-run correlations in the stochastic process should
method attracted much attention in the context of fractionakhow up in deviations from the asymptoi@ and (4).

Brownian motion[24]. Furthermore, Mandelbrot and Wallis have demonstrated
The R/S statistic for a serieg, in the discrete integer that the value of the asymptotic prefacids/2 is not robust
valued time is conventionally defined as with respect to short-run statistical dependeh26]. This

value can be arbitrarily modified by cyclic components in the
random process. The superposition of a white ndigith

t
X(t,S)=u§1 (£u=(£)9), zero mean and unit variancend a purely periodic process,
for instance, leads to an asymptotic value ¢f7/2 (1
R(s)= maxX(t,s)— min X(t,s), +A2)"12 with A being the amplitude of a sine wave.
1<t<s 1<t<s Moreover, the transition to the asymptote is not smooth, but

typically shows a series of oscillations, resembling the case
18 172 of a purely oscillatory proced26]. Therefore, theR/S sta-
S(s)z{—E (gt—<§>s)2} , tistic is perfectly suited to analyze a stochastic process for
St=1 correlations orall scales.
, In the following section several types of PRNGs will be
R'(s)=R(s)/S(s). @) used to generatd (0,1) distributed random numbegs. The
sequence of,; will then be analyzed according to th/S
statistic. It will be demonstrated that various PRNGs produce
sequences of numbers that show deviations from the
asymptotic behavio(3) and (4). Moreover, it is found that
1.8 for finite lags 7 the value ofR’(7) differs significantly be-
<§>S=_E & (2) tween the tested PRNGs being indicative of short-range cor-
St=1 relations. This way it is possible to obtain a complete “fin-

) ) ) gerprint” of correlations of a PRNG and to measure their
over the time lags—1 is subtracted to remove a trend if the intensity as a function of the lag.

expectation value of; is not zero. In the following the dif-

Viewing the & as spatial increments in a one-dimensional
random walk,={_, & is the distance of the walker from the
starting point at times. In the quantityX(t,s) the mean

ference between the final tingeand the initial time 1 of the Il. RANDOM GENERATORS

stochastic process will be termed the lags—1. R(7) is )

the self-adjusted range of the cumulative suansiR’ (7) is Because of the vast number of different PRNGs currently
the self-rescaled self-adjusted rangehich is the quantity of ~€mployed in simulations, only a small fraction can be se-
our interest. lected in this work. The generators of the first group, labeled

Feller[25] has proved that the asymptotic behavior for theG1-G7, are included as they are in general (sither be-
expectation value oéiny independent randomrocess with ~ cause of traditions, because they are recommended in popu-

finite varianceis given by lar books, or because they can be found in many commercial
software packagesSome of them have documented defects
lim E[ 7~ Y2R’ (7)]= \/m/2. (3) (G1,G2,G3,G5). These are considered here to study how
70 their deviations show up in the/S statistics. The generators

o ] _in the second groug8-G11, have been proposed recently
The combinationR(7)/S(7) has a better sampling stability to match also future requirements on period length and qual-
thanR(7) in the sense that the relative deviationRSf, de- ity. However, there is little documented experience about
fined asAR'(7)=yVarlR'(7)J/E[R'(7)], is smaller[26].  their behavior in physical simulations. As there are many
For an independent Gaussian process the limiting standagbod reviews and books on the various generation methods
deviation is and the performance in the standard t4&s5,7,8,27—2p

. only a brief outline of the considered algorithms is given in
lim \/Var[R,(T)]/’T: \/7T2/6_ ’7T/2~02723 (4) the next Section_

T—®

On the other hand, Hurst had found empirically that many A. Generation methods

time series of natural phenomena are described by the scal- Most of the commonly used PRNGs are based on the
ing relation linear congruential method. In generalpaultiple recursive
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generatorof orderk, denoted by MR&,, ... ,a,;c;m), is  The div denotes an integer division. Here, in contrast to the
based on théth-order linear recurrence MRG, a carry(or borrow c, is propagated to the next itera-
tion step.
Xn=(a1Xp_1+ - - +aX,_k+c)modm, (6) Special cases of the MWC are thed-with-carry AWC

o (I1,15;m), and the subtract-with-borrow SWB(4,l,;m),
where the orde_k_and the mc_)dulusm are positive integers generators, which are obtained by setting two coefficiants
and the coefficients are integers in the range(m 4, nit modulus and all others equal to zdib,38. This

—1),... . m—1}. The numbers, of the sequence are then p,qicaly results in a LF generator with two lags, but with an
scaled to the intervdl0,1] by u,=Xx,/m. extra addition of a carry,

The special case, whele=1, is the well-knownlinear
congruentialgenerator LCG4;c;m) introduced by Lehmer X0 = (Xp_1.+Xn_|.+Cy_q)Mod m,
[30] or in the homogeneous case-0 the multiplicative lin- ! 2
ear congruentialgenerator, denoted by MLC@(m). It can
be shown that a recursion of ordemwith a nonzero constant
c is equivalent to some homogeneous recurrence of deder o
+1 [5,28). All congruential generators show a pronounced'n the case of an AWC the bracket indicates the value of the

lattice structure. That means thatrif subsequent numbers &y thatis equal to 1 if the inequality is true and equal to 0
are used to form vectors in the-dimensional space all otherwise. In the case of a SWB the addition operations ac-

points that can be generated within the period lie on a familyF°rdingly have to be replaced by subtractions and the borrow

of equidistant parallel hyperplands]. Tables with good is equal to 1 if the result of the subtractions becomgs nega-
choices for the constants can be found in recent reviewlVe- These generators can produce much longer periods than
[3,28,31,32 the underlying LF generators, but have a bad lattice structure

in dimensionl+1 (I being the larger of the lag$3,5,39.
The subtraction methoUB(c;m) is based on a simple
arithmetic sequence

an[xn,|1+xn,|2+cn,1>m]. (11)

A lagged Fibonaccigenerator LF(;, ... l;m;O) with
k lags is obtained foc=0 andk coefficientsa; being set to
unit modulus, the others being set to zero,

Xn=(Xp-1,0 - - OXp_y Jmod m. 7) Xn=(Xn—1—C)mod m. (12

This method is not suitable by itself, but it may be included
in combination generatof§,40].
The multiplicative quadratic congruentiainethod MQC
[4,8], the cryptographicBBS [41] and DES[42] generators,
or theinversive congruential generatotCG [43] are only
mentioned for completeness, as these have received consid-
bn=bn_p®b,_q, (g)  erable theoretical attention recently. These methods have
promising features, but the generators are currently not in
where the exclusive-or operati@n is equivalent to a bitwise common use as there is little practical experience with them.
addition modulo 2[8,33. A sequence of pseudorandom In general, the PRNGs with several lags require an initial
numbers is then obtained by taking an appropriate number &€t of seeds, ... X, the number of which is determined
consecutive bits to form an integer number. by the largest ladg. While most generators do not require a
Generalized feedback shift registgeneratord34], de-  special initialization procedure, care has to be taken with the
noted by GFSR(, . .. l,;m), which can be considered as a GFSR generators. Here an improper selection of the seeds
generalization of the Tausworthe generator, are related to thean severely affect the quality of the sequence of PRI}
lagged Fibonacci method, but use the exclusive-or operatio@ften a congruential generator is used to generate the initial
instead of the arithmetic operators to combine computeftate.
wordsw, Tausworthe and LFSR generators that are based on the
theory of primitive trinomials form unfavorable structures
Wn=Wn_| @ OWp_| . (9)  similar to the lattice structure of LCGs and have bad statis-
tical properties[16,29. Such simple generators should be
A generator of this type with two lag€l03 and 25p has  avoided and combined generators should be used instead.
been made popular by Kirkpatrick and Stoll and is known as There is strong empirical support that the combination of
R250[ 35,36 (see alsd9]). A particular realization with four  different pseudorandom sequences in general leads to an im-

The binary operato© is usually either addition or subtrac-
tion.

The linear feedback shift registesr Tausworthemethod
LFSR(p,q) generates a sequence of binary didlgs) b,
from the recurrence relation

lags has been given by Zif37] (for test results sef18—  proved statistical behaviof4,45. The two well-known
21]). A recently proposed special variant with huge period ismethods are thehuffling of one sequence with another or
the twistedGFSR generator TGFSR.7]. with itself [4,8] or the combination bymodular addition
The multiply-with-carry generator, denoted by [28,32. Hybrid generators based on the first method are still
MWC(ay, ... ,ac;c;m), is defined by the recurrence rela- not well understood from the theoretical viewpdi85]. The
tion latter method is better understood and is suited to obtain very
long periods. Adding two sequences modulo the modulus of
Xp=(a1Xn_1+ - - - FaXp_ g+ Cnh_1)mod m, either of them, the period obtained is the least common mul-

tiple of the component periods. Generators based on such
Ch=(a1Xp_1+ - +aXn_g+Ch_1)div m. (100  combination methods currently provide us with the “best”
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PRNs. Many different kinds of combined generators have G7 combines the two congruential sequences
been proposed; see Refd,5,7,14-16,28,32,40and refer-  MLCG(40014;21-85) and MLCG(40692;%—249) by
ences given therein. . modular addition and applies an additional shuffling in a
Another common method thaian lead to an improve- apje of 32 entries. The period is approximatel§Z. 2This
ment of a generator is éecimationstrategy, which means a algorithm has been invented by L'Ecuyf82] and imple-
number of PRNs are thrown away before the next rando%emed by Jame] (called RANECU). The additional shuf-

number is delivered. This approach is taken for instance il?“ng has been added in the versiganz of Presset al
the RANLUX generatof46,47], which significantly improves [42.49. Many recommendations for the improvemefar

e g GG, f e Sp0b h e versio e e g
g y y Marsaglia and Zamafi4]. They reported that this gen-

speed considerations are very importege Appendix B for . ;
ti?ning results y importesge App erator passes all standard tests. Because of its popularity, the

In the following the generators subjected to RES sta- !mplementatior_l of Refd42,49 has been used in the follow-
tistical analysis are briefly described. ing R/S analysis. .
G8 is the recently proposed PRN&@RAN13 of Marsaglia
and Zaman. It combines LCG(69069,1013904243; 2nd
B. Tested generators SWB(2,3;2?—18) by modular addition and has a period of

G1 is the well-known MLCG(7:23'—1), which has about 2?°[14]. Although the published program takes ad-
been proposed as the “mimimal standard” against which alvantage of the inherent modulo®2arithmetic of modern
other generators should be judg¢d7,31,48. It is also CPUs it can easily be made portable to CPUs with any larger
known asGGL [31], CONG [9], RANO [42,49], SURAND (IBM word size by using bit masks.
computery, RNUM (IMSL library), or RAND (MATLAB soft- G9 is a composite generator of L’'Ecuygt5] based on
ware. It has the serious drawback of a short periott21,  the modular addition of the sequences of MRG(0,63308,
and a pronounced lattice structure in low dimensions. Multi-— 1833260;2%'-1) and MRG(86098,6;5396080;23!
plier and modulus are not the optimal choice considering—2000169). It has a very long period of abou®2and a
several figures of merit; see, for instant®), This generator lattice structure with theoretically better properties ti@n
should only be considered as a toy for experimenting witH 15].
test methods like all other simple congruential and LFSR G10 is the maximally equidistributed three-component
generators. Tausworthe generatorausss developed by L’Ecuyef16]

G2 is identical toG1, but additionally Bays-Durham with a period of approximately%.
shuffling in a table of size 32 is used to improve the low- G11 is the twisted GFSR generatorsoo proposed by
order serial correlations. Here the implementatioxni of ~ Matsumoto and Kuritd17] and has a huge period of%®
Refs.[42,49 has been applied. It is included in this test to —1 and is reported to have excellent equidistribution prop-
show the influence of shuffling on th®/S statistic. erties up to a dimension of 25. This generator is recom-

G3 is a LF(55,24;3%, —) generator that has a period of mended in[3]. The tested version includes Matsumoto’s
2%°—1. It has been devised by Mitchell and Moore in 1958code change of 1996, which improves the lower bit correla-
and is described by Knutp4] (originally using an add op- tions.
eratior). This generatofa version of which is implemented
in [42] asRANB) is reported to have significant correlations IV. DESCRIPTION OF THE TEST AND RESULTS
on the bit level and to fail several physical tegt4,18-21.

It is included to demonstrate the effect of short-range corre- A. Test setup
lations on theR/S statistic. A few additional words have to be said about the genera-

G4 is a modification of the above generat@8. If a  tion of the initial seeds for the PRNGs. As these @ressi-
decimation strategy is used, that is, if only evktli number  bly) the only truly random part when generating pseudoran-
of the sequence is used, the generator passes all of the phy8em numbers, some care should be taken.
cal tests in Refg18—2( (for k=2 andk=3). In this work The following method has been applied, as it corresponds
only the case ok=3 is considered. to a common way random generators are used in practice.

G5 is the GFSIRR50,103;3?) generator R250 proposed The initial seed is calculated from a combination of some
by Kirkpatrick and Stoll[35,36. It has a period of 2° obviously truly random events, such as the time and the date
While this generator performs well in the standard statisticalvhen the program is started, several system-sp€cifiicjue
tests, it is reported to fail several physical td€s18—21. process identifiers, and the processor clock state. For this

G6 is the combination generat®ANMAR proposed by initial seed a sequence of %010'° random numbers is gen-
Marsaglia, Zaman, and Tsar@,40] and has a period of erated and analyzed according to Ef). Then, for some
about 244 It is based on the subtraction moduld*®f a  new random seed another sequence is obtained and analyzed.
simple arithmetic sequence SUB(765432f:23) and a This procedure has been iterated until the statistical error
subtractive Fibonacci generator LF(97,33:2-). The ini-  for the average oR’(7) was considered small enough. For
tial state is generated by another combination ofeach of the generators this amounted t&'2Q0" generated
LCG(531;169) and a multiplicative three-lag Fibonacci se- PRNs.
qguence. The implementation of Jan{&g tested here is in As this approach does not ensure that the generated sub-
widespread use and has been recommended as a “universteams are disjoint it might look saferdplit the period into
generator.” disjoint parts. This could be done for almost all generators,
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FIG. 1. Double-logarithmic plot of the numerical dat@®Y of

FIG. 3. R(7) versusr for G1 (O) andG2 (*) illustrating the
effect of a shuffle table. The inset shows a larger range. of

R’(7) for all PRNGs. On this scale the results for the various

PRNGs are indistinguishable. The asymptotiesr/2 behavior is

indicated by the dashed line.

but there are several cases known where thggacally)

standard floating point arithmetics. The number of PRNs
generated in the test of each generator is comparable to the
number of random deviates typically required in a current
high-precision Monte Carlo simulation. Such a number may

equidistantly spaced seeds introduce even worse correlatioﬁ%em large for a mere test, but it comprises the current state

[5]. One should also bear in mind that for the long-period®

the art in research fields such as percolation, random

generators there is only a very small probability that, forValks, diffusion limited aggregation, and many others

instance, 10 or 20 sequences of%Aumbers selected by
random seed are not disjoifof course the period of the

“toy” generators is exhausted immediatgly

In the case of generators requiring more than one saed

a [9,11,13. Considering the speed of the advances in computer
technology, much larger simulations will be in reach within
the next few years, posing increased demands on precision to
the PRNGs. Correspondingly, the stringency of the empirical

initial seed has been generated and mixed into the defadieSts has to increase too.

seeds of the original source code. For instance, the 25 pub-
lished seeds that define the state of the TGFSR generat 1§
G11 have been combined with a new random seed using

In the following section it will be shown that several cur-
nt thought-to-be-reliable PRNGs show pronounced corre-
gtions in theR/S statistic. This does not mean that a large-

exclusive-or operation every time a new sequence has beagale simulation inevitably produces erroneous results with

generated.

All calculations necessary to evaluate tRéS statistic

such a PRNG, but it just means that in some types of simu-

have been performed in double precision using IEEE 754
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FIG. 2. Semilogarithmic plot oR’(7)(w7/2)"Y¥?—1 for the
pseudorandom number generat@&$ (O) andG9 (). The lines

are intended as a guide to the eye.

FIG. 4. Upper figureR(7) versusr for the LF generatoG3
(A); lower figure, drastic deviations from the asymptotic value
(dotted ling are also visible iIMAR’(7).
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FIG. 5. R(r) for the generatoG4 (< ). Inset: magnified view

for small lagsr.

FIG. 7. R(7) for the combination generatdg6 (X). Inset:
magnified view for small lags.

lations deviations are not unlikely if high precision is re- . .
quired. Moreover, the main purpose of this paper is to demlarge as 1%, corresponding to a reduced asymptotic prefactor

onstrate that thdR/S statistic is a candidate to enrich the
toolbox of empirical tests for random number generators.

B. Analysis of the R/S data

In Fig. 1 the diagram of ldg’(7) versus log is shown for
all tested random generatofR!(7) has been calculated for
all powers of 2 in the range from=2 up to r=2~8
x 1CP as indicated by the dots. Afterteansientbehavior for
lags smaller tharr~10* the asymptotic law(3) appliesal-

(which appears to be approximately 1.243 instead,/ef2
=1.253). For comparison the data for the highly reliable
composite MRGG9 are shown. In this case the asymptotic
expectation value is approached smoothly. Due to the large
statistical ensemble, the error bars appear as single lines.
The distribution of the numeric&/S values for all lags is
well described by the slightly right-skewed asymptotic den-
sity as given by Fellef25]. The half-width of the error bars
for the estimate of the meain this and the following fig-
ureg is given by two standard deviations according to the

most perfectly. However, on this scale the results for theasymptotic analytical resu{#). This corresponds to a confi-

various PRNGs are indistinguishable for all lags.

dence level of about 95%. The numerical results for the

~To resolve differences between the PRGNS it is convemean together with the standard deviation of the mean are
nient to remove the asymptotic trend. In Fig. 2 the reducedabulated in Appendix A for all generators of this test.

function R’ (7)(w7/2)"Y?—1 is displayed for a generator

As with several other test statistics where only the

with known correlationsG1 (circles and the combination asymptotic distribution is available, one is limited to com-
generatoiG9 (squareps On this scale of magnification it can pare the generators. Comparing the estimate of the mean for
be seen that the simple LCG spectacularly fails to approacfinite lags with the asymptotic expectation, one could always
the expected asymptotic. The relative deviation becomes asnforce a rejection of a generator if the number of samples is

=8
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FIG. 6. R(7) for the GFSR generatd5 (+). Inset: magnified

view for small lagsr.
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FIG. 8. R(7) for the combination generatds7 (). Inset:
magnified view for small lags.
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FIG. 9. R(7) for the combination generatds8 (). Inset: FIG. 11. R(7) for the combination generat@10 (™). Inset:

magnified view for small lags. magnified view for small lags.

sufficiently increased. In the following a method is describedachieved for all values of=4. The coefficients have been
that facilitates the comparison Bf (7) for the different gen-  obtained from a numerical adjustment using the mean values
erators. obtained from the stronger generat@8, G9, andG10 with

It can be safely assumed that the asymptotic limit is ap in the range 4-%. In this range the individual results
proached smoothly with increasing Therefore, any appar- agree to a high precision. The values of the coefficients in
ent local and nonmonotone structure in the transient will beEg. (13) used in the following are
indicative of correlations. Analyzing the functional form of
the transient, a simple and smooth interpolation can be found a~1.0319941, y~0.10516938 £~0.617 755 33,
that gives an accurate approximation for all lags within a
range of more than six orders of magnitude. The transient of $~0.420911 84, 5~0.901 876 33. (14)
R’(7) can be parametrized by

ﬂ_1> )
VTTl2—a

The smooth interpolatio®(7) of the transient now allows
an unbiased comparison of the various PRNGs. As the ex-
;_ E) +ye~ o1 pectation values for finite- are not known, the approxima-
arctarpBr  w tion (13) and(14) is used instead. The generators can now be
(13  compared with the approximate transient. This approach has
been found to be superior to comparing the generators indi-
Using only two parameters, 3, the first two terms suffice to  vidually. In particular, the influence of statistical fluctuations

approximate the transient with a relative precisionsdf0">  of the mean are minimized compared to a pairwise compari-
for all lags larger thanr=32. The last term in Eq.13) has  son of the generators at a given valueroln the following

been introduced to approximate the transient for lags ai will become clear that the important point is not to have a
small as7=4. This way a relative precision of 10 is  precise approximation of the transient for truly random num-
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FIG. 10. R(7) for the combination generatds9 (). Inset: FIG. 12. R(7) for the TGFSR generatds11 (V). Inset: mag-

magnified view for small lags. nified view for small lagsr.
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TABLE I. Numerical values ofR(7) are tabulated in columns for the generat@rls, G2, andG3. The value of one standard deviation
(o) of the mean is given in parentheses. If the deviation is larger tlhath@ value is framed and the deviation in unitscofs attached to
the right.

T Gl G2 G3

22 1.572(3.84)10~¢ —1.228(6.61)10~°
23 —1.166(4.50)10~¢ 3.183(7.76)10~°
24 2.972(5.68)10~° 1.010(9.79)10~¢
25 1.045(0.75)10~° —-1.026(1.29)10~%
26 6.990(1.01)10~% 1.348(1.01)105 [£3.324(0.17)10~ %
7 1.593(13.8)10¢ (A0 2010~
28 —2.911(19.0)10—° —6.774(19.0)10~¢ [-9.531(0.33)10~ %9
2° —2.170(2.65)10~5 ~3.392(2.65)1075 [9.763(0:35) 10~ %,
210 6.632(3.71)10~° 4.517(3.71)10~° [£9.344(0.49)10~ %5
212 [T209(0.07 16,7 [T192000710 e
219 —8.803(0.78)10~
214 ~Z627(0.13)10~ o ~2.637(013)10-%o
a5 F3263003010 %o F3amanio: ~2.177(1.53) 10~
216 [ O3 5560043110 s 2.702(21.5)105
217 Feosi(en10-Y, 3.151(30.4)10~%
218 7.069(4.30)10~1
210 1.232(6.08)104

bers. The detection of a deviation is insensitive to the exacyf R(7) (upper figure to a “shifted asymptotic” reflecting a
form of the approximation: In all cases a defect showed up amodified asymptotic prefactor. This gives evidence of the
a pronounced wiggle iR’ (7) around the monotone tran- presence of some strong cyclic components in the pseudo-
sient. Therefore, the subtraction of any monotone and slowlyandom process d&3. This is the only generator in this test
varying function would suffice to reveal a characteristicshowing also deviations oAR’(7) from the asymptotic
“fingerprint” of correlations in the PRNG. All systematic value (Fig. 4, lower graph If a decimation strategy witk
deviations ofR(7) from zero are indicative of the presence =3 is applied, corresponding to genera@®#4 (diamonds,

of correlations and the amplitude at lagcan be considered the correlations are strongly suppressew. 5).

as a measure of the strength of correlations for the given lag. The GFSR generatoB5 (Fig. 6) uses larger lags than

Hence the various PRNGs can be compared quantitatively G3. shifting the onset of correlations to largerThe mag-
nitude of the deviation is even twice as large as that of gen-

_ _ eratorG3. These dramatic deviations are obviously indica-
C. Discussion of the results tors for the poor behavior 065 in some MC simulations
In Fig. 3 the semilogarithmic plots dR(7) versus log  [18]- Pseudorandom numbers of much better quality are ex-

for the toy generator§1 (circles and G2 (asterisks are pected from combination generators that can overcome the
shown for lags between 4 and'22x 1(f (inse}. Serious weakness of generators that are structurally too simple.

- ; e In Fig. 7 the performance of the popular combination gen-
deviations are evident for lags larger thar?.1Magnifying . )
on the vertical axis by a factor of 25, the plot®{ r) reveals eratorG6 (pluses can be estimated. Whenis somewhat

deviati | 0 in fi I 0IG2 larger than the lags of the LF component of the generator
eviations also at sma agenain figurg. In generato significant deviations irR are observedsimilar to G3 and
additional shuffling in a small table has been introduced t°G5). These are presumably due to the deficient LF compo-

improve low-order serial correlations of genera@®t. For ot of the composite generator. However, compare@3o
lags up tor~128 the deviations are indeed strongly reducedshe deviation is about 10 times smaller. For the time being
As expected, there is no improvement for lags that are muckhere are no documented failures in physical simulations that
larger than the size of the shuffling table. use this generatof19]. However, comparing Fig. 7 with

In Fig. 4 the results for the lagged Fibonacci generatoiFigs. 4 and 6, one can conclude that deviations in MC simu-
G3 (triangles are shown. This generator is known to fail lations are not implausible if higher precision is demanded.
several testg¢see Refs[18—21] and Appendix . It is reas- PRNGs that are as fast but that have better long-range
suring to see that thR/S statistic easily reveals the onset of properties are discussed in the following. In Fig. 8 the results
disastrous correlations atcorresponding to the larger lag of for the combined congruential generat@i7 (crossep are
the generatorl(=55). The deviations show up as a crossovershown. Compared to the previous generators, there are no
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TABLE II. Numerical values ofR(7) are tabulated in columns for the aeneratGé. G5. andG6. See Table | for an explanation.

T G4 G5 G6

22 ~8.584(26.4)10~7 —-3.322(2.58)10~° —7.225(18.7)10~7
22 —3.268(3.10)10~¢ —~2.058(3.03)10~¢ —1.715(2.20)10~¢
24 1.845(3.92)10~¢ —5.343(3.82)10° —1.889(2.77)10~¢
2% -6.375(5.15)10~% —1.010(5.03)107¢ —1.744(3.64)107¢
26 —7.679(69.4)10~7 1.074(0.68)10% 1.019(0.49)10~7%
27 —2.283(0.95)10~%, —1.135(0.93)10° —7.898(6.71)107¢
28 —3.893(1.31)10~%, —1.254(1.28)10° —2.120(9.28)10¢
29 —4.791(15.0)10~® 4.778(1.78)10~ 5, —6.419(1.06)10~;
210 —2.263(2.10)10~° 8.746(2.49)10% —1.354(0.15)10~%
211 —4.342(2.94)10~5 —2.890(0.35)10~ % —1.432(0.21)10~%
212 —5.510(4.14)1075 —9.464(0.49)10 % —1.028(0.29)10— 7
213 4.312(46.7)10~6 —1.557(0.05)10 %3 —5.653(3.05)10~5
214 1.065(0.64)10™4 —2.058(0.07)10—%; —5.522(4.30)1075
215 9.044(9.09)10~°% —2.094(0.12)10 ;6 —1.385(0.76)10~*
216 —3.961(12.8)10~° —1.770(0.18)10= ;0 —9.816(10.8)10~°
217 ~-1.651(1.81)10—4 —1.516(0.25)10—% —4.896(15.2)10~5
218 —1.093(2.56)10™4 —8.485(3.51)10~%, 1.387(2.15)10~¢
219 —9.906(3.62)10~ % —6.466(4.96)10~* 3.722(3.04)10~*
220 —6.947(5.12)10~* —1.979(7.02)10—* 9.075(4.30)10~%

significant deviations. Random numbers of high quality are To illustrate the capability of th&/S statistical analysis
also produced by the recently proposed composite generatosgveral popular generators have been subjected to an exten-
G8-G11 (Figs. 9-12. For all lags in the range®2-2?' there  sive test. The randomness of all tested PRNGs with known
are no significant differences in th¥'S statistic. These four defects could be refuted. Moreover, deviations in several
PRNGs are based on four different generation methods. Geigenerators that are thought to be reliable have been quanti-
eratorG8 applies a combination of generators with differentfied. Thus theR/S analysis has to be considered more strin-
algebraic structure, while the two-component MS and  gent than many of the previously suggested tests in the sense
the three-component Tausworthe genergB#O combine that more generators fail it.
generators of the same class. FinalB11 is a TGFSR gen- The selection of a PRNG for a specific simulation de-
erator that distinguishes itself by an extraordinarily long pe-pends on the required level of precision and on the range of
riod [51]. The fact that four generators of completely differ- the correlations that may have an impact on the quantity of
ent algebraic structure and with theoretically favorableinterest, although this often cannot be assessed in advance.
properties give consistent results reassures that the observeldwever, no generator showing a performance inferior to
deviations of the other generators are indicators of real deanother generator in several tests should be used any longer
fects. if it does not even distinguish itself at least by speed. Weak
It should be noted thalR’(7) necessarily has been correlations in a current state-of-the-art genergike some
sampled on a coarse grid on the logarithmic scale. Therefor@f this tesj can lead to erroneous results in a future high-
it is possible that several types of correlations that wouldprecision calculation.
have shown up as a narrow structure have not been recog-

nized. Nevertheless, the observed deviations are intriguing. ACKNOWLEDGMENTS
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V. CONCLUSIONS
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TABLE lIl. Numerical values ofR(7) are tabulated in columns for the generatGra, G8, andG9. See
Table | for an explanation.

T G7 G8 G9
2?2 —7.94817.810°7 1.4582.0410°° —8.94616.710°7
28 —3.11520.910° —6.02323.910°7 —9.81519.610°7
24 —4.6272.6410° ¢ 2.8913.0210 ¢ 6.31124.9710°7
25 —6.88610.310°¢ —3.55339.710°7 —9.777132.410°7
26 4.84710.210° ¢ 7.9584.1210° ¢ 6.7294.2610° 8
27 —1.1921.0910°° —1.5541.0)10°° —3.9115.9810°8
28 —1.8741.0010°° —1.9391.0010°° —8.90082.710°7
2° —1.7441.0010°° 3.12314.110°° —1.3431.1910°°
210 —9.15410.010°© —1.83619.710°°© —2.70116.910°®
21 2.09511.110°© 7.06127.710°© 2.0192.2610°°
212 —3.46815.610°© —7.50538.910°© 3.2403.1810°5
213 9.71%21.510°© 2.1133.1710°° —2.4282.4410°°
214 8.67030.1)10° ¢ 8.36944.610° ¢ —8.33134.5910°8
215 3.6924.7)10°° 5.8266.7410°° —4.16653.1)10°8
216 —3.9566.6510°° 1.0250.9510 4 —2.4857.5010°°
217 —1.240.94910 4 4.5916.1310°° —5.42310.610°°
218 —1.7821.3010°* 7.8428.6610°° 8.84215.010 %
219 -1.5791.7910"* 1.9681.2210 4 —2.13921.210°°
220 —1.5442.5410™* 1.18038.010°° 2.337129.910°°
221 —3.53543.5910 ¢ —4.7045.3710" 4 1.84%4.2310 4

Values that differ from zero by more than two standard de-deliver one PRN per function call and no function code has
viations are framed and the deviation in units of standardeen inlined. Although the figures may scatter between dif-

deviations is printed behind the box. ferent architectures, compilers, and optimization options they
should be indicative for the relative performance on
APPENDIX B: TIMING RESULTS workstation-type computers. It should be mentioned that in

. L , the case of combined MLCGs and combined MRGs
In Table V the typical execution times relative to the 96”'(67,69) a floating point implementation is often much

eratorG1 are given. All generators have been configured tQctar than an integer implementation on many modern
TABLE IV. Numerical values ofR(7) are tabulated in columns CPUs. These versions can compete with the fastest genera-
for the generator§10 andG11. See Table | for an explanation,  tors of Table V[50].

T G10 G11 APPENDIX C: ADDITIONAL RESULTS

22 —5.34521.810° 7 —1.2212.4610°° For comparison, the performance of the genera@ts-

23 1.1532.5610 © 2.64428.910 ' G11 in the recently proposedtblock testand therandom-

24 —1.7873.2310°° 6.72136.510° 7 walk test[18-2(0 has been calculated. For the group of
25 —6.2734.2510°° —4.8013.4910°° PRNGs that have already been considered in R&&-20

26 1.0240.5310°° 6.0124.7010°° the results were reproduced. The figures for all generators
27 3.8647.2210°° —8.1746.4310°° tested recently are reported in Table VI. According to Refs.
28 —1.0851.0810°° —1.4650.8910°° [18-20, the limit of acceptance in thg? test has been cho-
29 —5.06515.110 © 9.62617.010°© sen to bey?<7.815 in the case of the random-walk test and
210 1.1592.1110°5 5.6132377)10° 8 x><3.841 for then-block test. A generator is assumed to
211 —6.93329.610°° —1.1683.3910°°
212 1.9594.1610°° —8.47146.910°° TABLE_ V. Relative execution times of the generators consid-
213 3.0682.5210°° 2.2923.0410°° ered in this test.

14 — 6 —5
215 7322;252318‘5 —12?232218—5 PRNG Relative time PRNG Relative time
216 7.9987.3910°° —6.6084.8010°° G1 =1 G7 ~ 22
217 8.37310.410°° —7.8586.7810 ° G2 ~ 1.1 G8 ~ 0.7
218 2.91014.8910°° —2.5081.8310°* G3 ~ 0.6 G9 ~ 24
210 —7.40720.910°° —7.07225910 © G4 ~ 1.4 G10 ~ 0.7
220 —2.36329.510°° 2.75936.910°° G5 ~ 0.6 G11 ~ 0.9

221 9.89541.710° % —8.2835.1810°4 G6 ~ 1.3




2596 B. M. GAMMEL PRE 58

TABLE VI. Results for three runs of theandom-walk testwalk lengthN= 750 using 16 sample} and of then-block test(block size
N=500 using 3< 10° sample3[18—20. The framed figures indicate a failure in this test.

PRNG x? in random walk test X% in n-block test

G1 1.386 1.539 2.499 0.197 0.067 0.079
G2 2.131 2.889 5.127 0.009 0.026 0.014
G3 36.567 61.235 1307 2.161 1.104
G4 1.402 2.225 7.080 0.982 0.801 1.002
G5 515.46
G6 1.883 1.958 0.780 1.797 0.152 0.214
G7 1.764 0.329 1.093 0.397 0.488 0.002
G8 2.378 1.289 3.497 0.160 0.764 0.024
G9 2.275 4.663 8.249 1.592 0.008 2.598
G10 2.634 1.699 0.979 0.325 2.550 0.341
Gl11 2.368 3.858 0.239 0.452 0.035 0.817

pass the test if in at least two of three independent runs the From the presented figures it is obvious that the walk
value of x? is below the given limit. length (block size in these tests is too smalby orders of
The only PRNGs that show significant deviations frommagnitude to catch the severe defects at lags that correspond
the expected distributions are generaté3 andG5. If the  to the large walk lengths in realistic simulations. It is also
decimation strategy is used, th&8 also passes these tests evident that it is not sufficient to consider only a fixed lag as
(corresponding td54). These results have to be contrastedthe amplitude of the deviations can vary strongly with the

with the performance of the PRNGs in th¥S statistical  |ag. Finally, theR/S statistic appears to be superior, consid-
analysis, which is much more stringent in the sense that MOTgring its sensitivity for correlations.

generators fall it.
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