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Hurst’s rescaled range statistical analysis for pseudorandom number generators
used in physical simulations

B. M. Gammel
Physik Department, Technischen Universita¨t München, D-85747 Garching, Germany

~Received 7 August 1997; revised manuscript received 19 November 1997!

The rescaled range statistical analysis (R/S) is proposed as a method to detect correlations in pseudorandom
number generators used in Monte Carlo simulations. In an extensive test it is demonstrated that theR/S
analysis provides a very sensitive method to reveal hidden long-run and short-run correlations. Several widely
used and also some recently proposed pseudorandom number generators are subjected to this test. In many
generators correlations are detected and quantified.@S1063-651X~98!06505-2#

PACS number~s!: 02.70.Lq, 05.40.1j, 02.50.2r, 75.40.Mg
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I. INTRODUCTION

Random numbers are the essential ingredient of all
chastic simulations. A great many algorithms in Monte Ca
~MC! simulations and other nonphysical computational fie
rely crucially on the statistical properties of the random nu
bers used. High-precision calculations on current comp
hardware typically involve the generation of billions of ra
dom numbers.

Today the most convenient and most reliable method
obtaining random numbers in practice is the use of a de
ministic algorithm. Such a numerical method produces a
quence ofpseudorandom numbers~PRNs! that mimic the
statistical properties of true random numbers as well as p
sible. Usually the pseudorandom number generator~PRNG!
is assumedto generate a sequence of independent and id
tically distributed continuousU(0,1) random numbers
which means uniformly distributed over the interval@0,1#.
Other distributions can be obtained by transformation me
ods @1#. Since the state space of the generator is finite,
sequence of PRNs will be eventually periodic. Therefore,
expected properties of ‘‘true’’ random variables can only
approximated.

True randomnumbers can only be produced by physic
devices that generate events that are principally unpred
able in advance, such as noise diodes org-ray counters.
However, such devices are inconvenient to use and Ma
glia reported that several commercial products fail stand
statistical tests spectacularly@2,3#. An alternative could be
the archiving of random numbers of high quality on
CDROM @2#, although such a source is by far not as con
nient to handle as a simple function call.

While theoretical testmethods@4,5#, such as the analysi
of the lattice structure@6# of linear congruential generators
are certainly the starting point for constructing a go
PRNG, there is also a strong need for so-calledempirical
tests. These view the PRNG under consideration as a bl
box and statistically analyze sequences of numbers for v
ous types of correlations, regardless of the genera
method. There is a large battery ofstandard tests@3–5,7,8,2#
that every candidate to be used in ‘‘serious’’ simulations h
to pass. PRNGs that have succeeded in all of these
seemed to work reliably in apparently all physical simu
PRE 581063-651X/98/58~2!/2586~12!/$15.00
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tions until the past few years. However, the rapid devel
ment of computer hardware and improved simulation al
rithms have caused the demands on the quality of the ran
number sequences to greatly increase. As a consequenc
roneous results have been found in recent high-precision
calculations. The errors could be related to the use of pop
PRNGs in combination with some specialized algorith
@9–13# that revealed hitherto undetected correlations in
pseudorandom sequences.

Thus there is a strong need to enlarge the ‘‘toolbox’’
empirical tests to gain confidence in recently propos
PRNGs @14–17# and to check whether traditionally use
PRNGs are still reliable in modern applications. Any go
statistical test should have an idiosyncracy for unwanted c
relations and detect defects before they show up in an ap
cation. Recently developed and highly specialized algorith
may be sensitive to structural defects in PRNGs that are
evident in the standard tests. As different tests detect dif
ent types of defects it is desirable to develop applicat
specific tests@18–21# that are especially sensitive to the fe
tures of the random numbers that are probed in simulati
in current fields of research. However, often this cannot
assessed in advance and the only way to reassure ones
the correctness of a suspicious~or very important! result is to
perform anin situ testand to repeat the simulation with som
different PRNGs. Enlarging the set of test methods theref
can help to save precious time and to avoid painful reca
lations.

In Sec. II a test method is proposed that is applied to a
of several popular generators described in Sec. III. In Sec
the results of the numerical experiments are discussed, i
trating the capability of the test. Following the conclusions
Sec. V, additional results are tabulated in the Appendixe

II. RESCALED RANGE „R/S… ANALYSIS

In the following I describe a technique for judging th
quality of PRNGs in at least several physically relevant si
ations. It will be demonstrated that the rescaled range sta
tical analysis provides an extremely sensitive method for
vealing hidden correlations in PRNGs.

As this method is based on general statistical proper
expected for an independent Gaussian process, it should
be useful as a general tool to test the suitability of a PRNG
2586 © 1998 The American Physical Society
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PRE 58 2587HURST’S RESCALED RANGE STATISTICAL ANALYSIS . . .
a wide class of stochastic simulations. In the following it w
be shown that it is especially effective for testing the pr
ence of along-runstatistical dependence and in cases wh
such a correlation is present, for estimating its intensity.
addition, it is shown that alsoshort-runcyclic components in
a pseudorandom sequence are easily made evident usin
R/S statistic.

Hydrology is the oldest discipline in which a noncycl
long-run dependence has been reported. In particular,
R/S analysis has been invented by Hurst@22,23# when he
was studying the Nile in order to describe the long-term
pendence of the water level in rivers and reservoirs. Later
method attracted much attention in the context of fractio
Brownian motion@24#.

The R/S statistic for a seriesj t in the discrete intege
valued time is conventionally defined as

X~ t,s!5 (
u51

t

~ju2^j&s!,

R~s!5 max
1<t<s

X~ t,s!2 min
1<t<s

X~ t,s!,

S~s!5F1

s(t51

s

~j t2^j&s!
2G1/2

,

R8~s!5R~s!/S~s!. ~1!

Viewing the j t as spatial increments in a one-dimension
random walk,( t51

s j t is the distance of the walker from th
starting point at times. In the quantityX(t,s) the mean

^j&s5
1

s(t51

s

j t ~2!

over the time lags21 is subtracted to remove a trend if th
expectation value ofj t is not zero. In the following the dif-
ference between the final times and the initial time 1 of the
stochastic process will be termed the lagt5s21. R(t) is
the self-adjusted range of the cumulative sumsandR8(t) is
theself-rescaled self-adjusted range, which is the quantity of
our interest.

Feller@25# has proved that the asymptotic behavior for t
expectation value ofany independent randomprocess with
finite varianceis given by

lim
t→`

E@t21/2R8~t!#5Ap/2. ~3!

The combinationR(t)/S(t) has a better sampling stabilit
thanR(t) in the sense that the relative deviation ofR8, de-
fined asDR8(t)5AVar@R8(t)#/E@R8(t)#, is smaller@26#.
For an independent Gaussian process the limiting stan
deviation is

lim
t→`

AVar@R8~t!#/t5Ap2/62p/2'0.2723. ~4!

On the other hand, Hurst had found empirically that ma
time series of natural phenomena are described by the
ing relation
-
e
n

the

he

-
is
l

l

rd

y
al-

R8~t!}tH, ~5!

whereH differs significantly from 1/2. In the context of frac
tional Brownian motion@24,26# a Hurst exponent ofH
51/2 corresponds to the vanishing of correlations betw
past and future spatial increments in the record. ForH
.1/2 one has persistent behavior, which means a pos
increment for some time in the past will on the average le
to a positive increment in the future~if the increments are
distributed symmetrically around zero!. Correspondingly, the
case ofH,1/2 denotes antipersistent behavior. Thus alm
all long-run correlations in the stochastic process sho
show up in deviations from the asymptotes~3! and ~4!.

Furthermore, Mandelbrot and Wallis have demonstra
that the value of the asymptotic prefactorAp/2 is not robust
with respect to short-run statistical dependence@26#. This
value can be arbitrarily modified by cyclic components in t
random process. The superposition of a white noise~with
zero mean and unit variance! and a purely periodic process
for instance, leads to an asymptotic value ofAtp/2 (1
1A/2)21/2, with A being the amplitude of a sine wave
Moreover, the transition to the asymptote is not smooth,
typically shows a series of oscillations, resembling the c
of a purely oscillatory process@26#. Therefore, theR/S sta-
tistic is perfectly suited to analyze a stochastic process
correlations onall scales.

In the following section several types of PRNGs will b
used to generateU(0,1) distributed random numbersj t . The
sequence ofj t will then be analyzed according to theR/S
statistic. It will be demonstrated that various PRNGs produ
sequences of numbers that show deviations from
asymptotic behavior~3! and ~4!. Moreover, it is found that
for finite lagst the value ofR8(t) differs significantly be-
tween the tested PRNGs being indicative of short-range
relations. This way it is possible to obtain a complete ‘‘fi
gerprint’’ of correlations of a PRNG and to measure th
intensity as a function of the lag.

III. RANDOM GENERATORS

Because of the vast number of different PRNGs curren
employed in simulations, only a small fraction can be s
lected in this work. The generators of the first group, labe
G1 –G7, are included as they are in general use~either be-
cause of traditions, because they are recommended in p
lar books, or because they can be found in many commer
software packages!. Some of them have documented defe
(G1,G2,G3,G5). These are considered here to study h
their deviations show up in theR/S statistics. The generator
in the second group,G8 –G11, have been proposed recent
to match also future requirements on period length and q
ity. However, there is little documented experience ab
their behavior in physical simulations. As there are ma
good reviews and books on the various generation meth
and the performance in the standard tests@3–5,7,8,27–29#
only a brief outline of the considered algorithms is given
the next section.

A. Generation methods

Most of the commonly used PRNGs are based on
linear congruential method. In general, amultiple recursive
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2588 PRE 58B. M. GAMMEL
generatorof orderk, denoted by MRG(a1 , . . . ,ak ;c;m), is
based on thekth-order linear recurrence

xn5~a1xn211•••1akxn2k1c!mod m, ~6!

where the orderk and the modulusm are positive integers
and the coefficients are integers in the range$2(m
21), . . . ,m21%. The numbersxn of the sequence are the
scaled to the interval@0,1# by un5xn /m.

The special case, wherek51, is the well-knownlinear
congruentialgenerator LCG(a;c;m) introduced by Lehmer
@30# or in the homogeneous casec50 themultiplicative lin-
ear congruentialgenerator, denoted by MLCG(a;m). It can
be shown that a recursion of orderk with a nonzero constan
c is equivalent to some homogeneous recurrence of ordk
11 @5,28#. All congruential generators show a pronounc
lattice structure. That means that ifn subsequent number
are used to form vectors in then-dimensional space al
points that can be generated within the period lie on a fam
of equidistant parallel hyperplanes@6#. Tables with good
choices for the constants can be found in recent revi
@3,28,31,32#.

A lagged Fibonaccigenerator LF(l 1 , . . . ,l k ;m;s) with
k lags is obtained forc50 andk coefficientsai being set to
unit modulus, the others being set to zero,

xn5~xn2 l 1
s•••sxn2 l k

!mod m. ~7!

The binary operators is usually either addition or subtrac
tion.

The linear feedback shift registeror Tausworthemethod
LFSR(p,q) generates a sequence of binary digits~bits! bn
from the recurrence relation

bn5bn2p% bn2q , ~8!

where the exclusive-or operation% is equivalent to a bitwise
addition modulo 2@8,33#. A sequence of pseudorando
numbers is then obtained by taking an appropriate numbe
consecutive bits to form an integer number.

Generalized feedback shift registergenerators@34#, de-
noted by GFSR(l 1 , . . . ,l k ;m), which can be considered as
generalization of the Tausworthe generator, are related to
lagged Fibonacci method, but use the exclusive-or opera
instead of the arithmetic operators to combine compu
wordsw,

wn5wn2 l 1
% •••% wn2 l k

. ~9!

A generator of this type with two lags~103 and 250! has
been made popular by Kirkpatrick and Stoll and is known
R250@35,36# ~see also@9#!. A particular realization with four
lags has been given by Ziff@37# ~for test results see@18–
21#!. A recently proposed special variant with huge period
the twistedGFSR generator TGFSR@17#.

The multiply-with-carry generator, denoted b
MWC(a1 , . . . ,ak ;c;m), is defined by the recurrence rela
tion

xn5~a1xn211•••1akxn2k1cn21!mod m,

cn5~a1xn211•••1akxn2k1cn21!div m. ~10!
y

s

of

he
n
r

s

s

The div denotes an integer division. Here, in contrast to
MRG, a carry~or borrow! cn is propagated to the next itera
tion step.

Special cases of the MWC are theadd-with-carry, AWC
( l 1 ,l 2 ;m), and the subtract-with-borrow, SWB(l 1 ,l 2 ;m),
generators, which are obtained by setting two coefficientsai
to unit modulus and all others equal to zero@14,38#. This
basically results in a LF generator with two lags, but with
extra addition of a carry,

xn5~xn2 l 1
1xn2 l 2

1cn21!mod m,

cn5@xn2 l 1
1xn2 l 2

1cn21>m#. ~11!

In the case of an AWC the bracket indicates the value of
carry that is equal to 1 if the inequality is true and equal to
otherwise. In the case of a SWB the addition operations
cordingly have to be replaced by subtractions and the bor
is equal to 1 if the result of the subtractions becomes ne
tive. These generators can produce much longer periods
the underlying LF generators, but have a bad lattice struc
in dimensionl 11 (l being the larger of the lags! @3,5,39#.

The subtraction methodSUB(c;m) is based on a simple
arithmetic sequence

xn5~xn212c!mod m. ~12!

This method is not suitable by itself, but it may be includ
in combination generators@7,40#.

The multiplicative quadratic congruentialmethod MQC
@4,8#, thecryptographicBBS @41# and DES@42# generators,
or the inversive congruential generator, ICG @43# are only
mentioned for completeness, as these have received co
erable theoretical attention recently. These methods h
promising features, but the generators are currently no
common use as there is little practical experience with the

In general, the PRNGs with several lags require an ini
set of seedsx1 , . . . ,xk , the number of which is determine
by the largest lagk. While most generators do not require
special initialization procedure, care has to be taken with
GFSR generators. Here an improper selection of the se
can severely affect the quality of the sequence of PRNs@44#.
Often a congruential generator is used to generate the in
state.

Tausworthe and LFSR generators that are based on
theory of primitive trinomials form unfavorable structure
similar to the lattice structure of LCGs and have bad sta
tical properties@16,29#. Such simple generators should b
avoided and combined generators should be used instea

There is strong empirical support that the combination
different pseudorandom sequences in general leads to an
proved statistical behavior@4,45#. The two well-known
methods are theshuffling of one sequence with another o
with itself @4,8# or the combination bymodular addition
@28,32#. Hybrid generators based on the first method are s
not well understood from the theoretical viewpoint@3,5#. The
latter method is better understood and is suited to obtain v
long periods. Adding two sequences modulo the modulus
either of them, the period obtained is the least common m
tiple of the component periods. Generators based on s
combination methods currently provide us with the ‘‘bes
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PRNs. Many different kinds of combined generators ha
been proposed; see Refs.@4,5,7,14–16,28,32,40# and refer-
ences given therein.

Another common method thatcan lead to an improve-
ment of a generator is adecimationstrategy, which means
number of PRNs are thrown away before the next rand
number is delivered. This approach is taken for instance
the RANLUX generator@46,47#, which significantly improves
the defective SWB generatorRCARRY @7,38#. However, nei-
ther shuffling nor the decimation method may be desirabl
speed considerations are very important~see Appendix B for
timing results!.

In the following the generators subjected to theR/S sta-
tistical analysis are briefly described.

B. Tested generators

G1 is the well-known MLCG(75;23121), which has
been proposed as the ‘‘mimimal standard’’ against which
other generators should be judged@27,31,48#. It is also
known asGGL @31#, CONG @9#, RAN0 @42,49#, SURAND ~IBM
computers!, RNUM ~IMSL library!, or RAND ~MATLAB soft-
ware!. It has the serious drawback of a short period, 23121,
and a pronounced lattice structure in low dimensions. Mu
plier and modulus are not the optimal choice consider
several figures of merit; see, for instance,@3#. This generator
should only be considered as a toy for experimenting w
test methods like all other simple congruential and LF
generators.

G2 is identical to G1, but additionally Bays-Durham
shuffling in a table of size 32 is used to improve the lo
order serial correlations. Here the implementationRAN1 of
Refs. @42,49# has been applied. It is included in this test
show the influence of shuffling on theR/S statistic.

G3 is a LF(55,24;231;2) generator that has a period o
25521. It has been devised by Mitchell and Moore in 19
and is described by Knuth@4# ~originally using an add op-
eration!. This generator~a version of which is implemente
in @42# as RAN3! is reported to have significant correlation
on the bit level and to fail several physical tests@11,18–21#.
It is included to demonstrate the effect of short-range co
lations on theR/S statistic.

G4 is a modification of the above generatorG3. If a
decimation strategy is used, that is, if only everykth number
of the sequence is used, the generator passes all of the p
cal tests in Refs.@18–20# ~for k52 andk53). In this work
only the case ofk53 is considered.

G5 is the GFSR~250,103;232) generator R250 propose
by Kirkpatrick and Stoll@35,36#. It has a period of 2250.
While this generator performs well in the standard statist
tests, it is reported to fail several physical tests@9,18–21#.

G6 is the combination generatorRANMAR proposed by
Marsaglia, Zaman, and Tsang@7,40# and has a period o
about 2144. It is based on the subtraction modulo 224 of a
simple arithmetic sequence SUB(7654321;22423) and a
subtractive Fibonacci generator LF(97,33;224;2). The ini-
tial state is generated by another combination
LCG(53;1;169) and a multiplicative three-lag Fibonacci s
quence. The implementation of James@7# tested here is in
widespread use and has been recommended as a ‘‘univ
generator.’’
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G7 combines the two congruential sequenc
MLCG(40014;231285) and MLCG(40692;2312249) by
modular addition and applies an additional shuffling in
table of 32 entries. The period is approximately 262. This
algorithm has been invented by L’Ecuyer@32# and imple-
mented by James@7# ~called RANECU!. The additional shuf-
fling has been added in the versionRAN2 of Presset al.
@42,49#. Many recommendations for the improvement~for
instance, of the speed! of the later version have been give
by Marsaglia and Zaman@14#. They reported that this gen
erator passes all standard tests. Because of its popularity
implementation of Refs.@42,49# has been used in the follow
ing R/S analysis.

G8 is the recently proposed PRNGMZRAN13 of Marsaglia
and Zaman. It combines LCG(69069,1013904243;232) and
SWB(2,3;232218) by modular addition and has a period
about 2125 @14#. Although the published program takes a
vantage of the inherent modulo 232 arithmetic of modern
CPUs it can easily be made portable to CPUs with any lar
word size by using bit masks.

G9 is a composite generator of L’Ecuyer@15# based on
the modular addition of the sequences of MRG(0,633
2183326;0;23121) and MRG(86098,0,2539608;0;231

22000169). It has a very long period of about 2205 and a
lattice structure with theoretically better properties thanG7
@15#.

G10 is the maximally equidistributed three-compone
Tausworthe generatorTAUS88 developed by L’Ecuyer@16#
with a period of approximately 288.

G11 is the twisted GFSR generatorTT800 proposed by
Matsumoto and Kurita@17# and has a huge period of 2800

21 and is reported to have excellent equidistribution pro
erties up to a dimension of 25. This generator is reco
mended in@3#. The tested version includes Matsumoto
code change of 1996, which improves the lower bit corre
tions.

IV. DESCRIPTION OF THE TEST AND RESULTS

A. Test setup

A few additional words have to be said about the gene
tion of the initial seeds for the PRNGs. As these are~possi-
bly! the only truly random part when generating pseudor
dom numbers, some care should be taken.

The following method has been applied, as it correspo
to a common way random generators are used in prac
The initial seed is calculated from a combination of som
obviously truly random events, such as the time and the d
when the program is started, several system-specific~unique!
process identifiers, and the processor clock state. For
initial seed a sequence of 109–1010 random numbers is gen
erated and analyzed according to Eq.~1!. Then, for some
new random seed another sequence is obtained and anal

This procedure has been iterated until the statistical e
for the average ofR8(t) was considered small enough. F
each of the generators this amounted to 1011–1012 generated
PRNs.

As this approach does not ensure that the generated
streams are disjoint it might look safer tosplit the period into
disjoint parts. This could be done for almost all generato
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2590 PRE 58B. M. GAMMEL
but there are several cases known where these~typically!
equidistantly spaced seeds introduce even worse correla
@5#. One should also bear in mind that for the long-peri
generators there is only a very small probability that,
instance, 10 or 20 sequences of 1010 numbers selected by
random seed are not disjoint~of course the period of the
‘‘toy’’ generators is exhausted immediately!.

In the case of generators requiring more than one seedone
initial seed has been generated and mixed into the de
seeds of the original source code. For instance, the 25
lished seeds that define the state of the TGFSR gene
G11 have been combined with a new random seed usin
exclusive-or operation every time a new sequence has b
generated.

All calculations necessary to evaluate theR/S statistic
have been performed in double precision using IEEE 7

FIG. 1. Double-logarithmic plot of the numerical data (d) of
R8(t) for all PRNGs. On this scale the results for the vario
PRNGs are indistinguishable. The asymptoticAtp/2 behavior is
indicated by the dashed line.

FIG. 2. Semilogarithmic plot ofR8(t)(pt/2)21/221 for the
pseudorandom number generatorsG1 (s) andG9 (h). The lines
are intended as a guide to the eye.
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standard floating point arithmetics. The number of PR
generated in the test of each generator is comparable to
number of random deviates typically required in a curre
high-precision Monte Carlo simulation. Such a number m
seem large for a mere test, but it comprises the current s
of the art in research fields such as percolation, rand
walks, diffusion limited aggregation, and many othe
@9,11,13#. Considering the speed of the advances in compu
technology, much larger simulations will be in reach with
the next few years, posing increased demands on precisio
the PRNGs. Correspondingly, the stringency of the empir
tests has to increase too.

In the following section it will be shown that several cu
rent thought-to-be-reliable PRNGs show pronounced co
lations in theR/S statistic. This does not mean that a larg
scale simulation inevitably produces erroneous results w
such a PRNG, but it just means that in some types of sim

FIG. 3. R(t) versust for G1 (s) andG2 (*) illustrating the
effect of a shuffle table. The inset shows a larger range oft.

FIG. 4. Upper figure,R(t) versust for the LF generatorG3
(n); lower figure, drastic deviations from the asymptotic val
~dotted line! are also visible inDR8(t).
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PRE 58 2591HURST’S RESCALED RANGE STATISTICAL ANALYSIS . . .
lations deviations are not unlikely if high precision is r
quired. Moreover, the main purpose of this paper is to de
onstrate that theR/S statistic is a candidate to enrich th
toolbox of empirical tests for random number generators

B. Analysis of theR/S data

In Fig. 1 the diagram of logR8(t) versus logt is shown for
all tested random generators.R8(t) has been calculated fo
all powers of 2 in the range fromt52 up to t5223'8
3106 as indicated by the dots. After atransientbehavior for
lags smaller thant'104 the asymptotic law~3! appliesal-
most perfectly. However, on this scale the results for t
various PRNGs are indistinguishable for all lags.

To resolve differences between the PRGNs it is con
nient to remove the asymptotic trend. In Fig. 2 the redu
function R8(t)(pt/2)21/221 is displayed for a generato
with known correlationsG1 ~circles! and the combination
generatorG9 ~squares!. On this scale of magnification it ca
be seen that the simple LCG spectacularly fails to appro
the expected asymptotic. The relative deviation become

FIG. 5. R(t) for the generatorG4 (L). Inset: magnified view
for small lagst.

FIG. 6.R(t) for the GFSR generatorG5 (1). Inset: magnified
view for small lagst.
-

-
d

h
as

large as 1%, corresponding to a reduced asymptotic prefa
~which appears to be approximately 1.243 instead ofAp/2
51.253). For comparison the data for the highly reliab
composite MRGG9 are shown. In this case the asympto
expectation value is approached smoothly. Due to the la
statistical ensemble, the error bars appear as single line

The distribution of the numericalR/S values for all lags is
well described by the slightly right-skewed asymptotic de
sity as given by Feller@25#. The half-width of the error bars
for the estimate of the mean~in this and the following fig-
ures! is given by two standard deviations according to t
asymptotic analytical result~4!. This corresponds to a confi
dence level of about 95%. The numerical results for
mean together with the standard deviation of the mean
tabulated in Appendix A for all generators of this test.

As with several other test statistics where only t
asymptotic distribution is available, one is limited to com
pare the generators. Comparing the estimate of the mea
finite lags with the asymptotic expectation, one could alwa
enforce a rejection of a generator if the number of sample

FIG. 7. R(t) for the combination generatorG6 (3). Inset:
magnified view for small lagst.

FIG. 8. R(t) for the combination generatorG7 (h). Inset:
magnified view for small lagst.
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sufficiently increased. In the following a method is describ
that facilitates the comparison ofR8(t) for the different gen-
erators.

It can be safely assumed that the asymptotic limit is
proached smoothly with increasingt. Therefore, any appar
ent local and nonmonotone structure in the transient will
indicative of correlations. Analyzing the functional form o
the transient, a simple and smooth interpolation can be fo
that gives an accurate approximation for all lags within
range of more than six orders of magnitude. The transien
R8(t) can be parametrized by

R~t![S R8~t!

Apt/22a
21D 2S 1

arctanbt
2

2

p D1ge2dt«
.

~13!

Using only two parametersa,b, the first two terms suffice to
approximate the transient with a relative precision of'1025

for all lags larger thant532. The last term in Eq.~13! has
been introduced to approximate the transient for lags
small as t54. This way a relative precision of 1025 is

FIG. 9. R(t) for the combination generatorG8 (v). Inset:
magnified view for small lagst.

FIG. 10. R(t) for the combination generatorG9 (h). Inset:
magnified view for small lagst.
d
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e
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of
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achieved for all values oft>4. The coefficients have bee
obtained from a numerical adjustment using the mean va
obtained from the stronger generatorsG8, G9, andG10 with
t in the range 4–214. In this range the individual result
agree to a high precision. The values of the coefficients
Eq. ~13! used in the following are

a'1.031 994 1, g'0.105 169 38 «'0.617 755 33,

b'0.420 911 84, d'0.901 876 33. ~14!

The smooth interpolationR(t) of the transient now allows
an unbiased comparison of the various PRNGs. As the
pectation values for finitet are not known, the approxima
tion ~13! and~14! is used instead. The generators can now
compared with the approximate transient. This approach
been found to be superior to comparing the generators i
vidually. In particular, the influence of statistical fluctuatio
of the mean are minimized compared to a pairwise comp
son of the generators at a given value oft. In the following
it will become clear that the important point is not to have
precise approximation of the transient for truly random nu

FIG. 11. R(t) for the combination generatorG10 (x). Inset:
magnified view for small lagst.

FIG. 12.R(t) for the TGFSR generatorG11 (,). Inset: mag-
nified view for small lagst.
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TABLE I. Numerical values ofR(t) are tabulated in columns for the generatorsG1, G2, andG3. The value of one standard deviatio
(s) of the mean is given in parentheses. If the deviation is larger than 2s the value is framed and the deviation in units ofs is attached to
the right.
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no
bers. The detection of a deviation is insensitive to the ex
form of the approximation: In all cases a defect showed up
a pronounced wiggle inR8(t) around the monotone tran
sient. Therefore, the subtraction of any monotone and slo
varying function would suffice to reveal a characteris
‘‘fingerprint’’ of correlations in the PRNG. All systematic
deviations ofR(t) from zero are indicative of the presenc
of correlations and the amplitude at lagt can be considered
as a measure of the strength of correlations for the given
Hence the various PRNGs can be compared quantitative

C. Discussion of the results

In Fig. 3 the semilogarithmic plots ofR(t) versus logt
for the toy generatorsG1 ~circles! and G2 ~asterisks! are
shown for lags between 4 and 221'23106 ~inset!. Serious
deviations are evident for lags larger than 103. Magnifying
on the vertical axis by a factor of 25, the plot ofR(t) reveals
deviations also at small lags~main figure!. In generatorG2
additional shuffling in a small table has been introduced
improve low-order serial correlations of generatorG1. For
lags up tot'128 the deviations are indeed strongly reduc
As expected, there is no improvement for lags that are m
larger than the size of the shuffling table.

In Fig. 4 the results for the lagged Fibonacci genera
G3 ~triangles! are shown. This generator is known to fa
several tests~see Refs.@18–21# and Appendix C!. It is reas-
suring to see that theR/S statistic easily reveals the onset
disastrous correlations att corresponding to the larger lag o
the generator (l 555). The deviations show up as a crossov
ct
s

ly

g.
.

o

.
h

r

r

of R(t) ~upper figure! to a ‘‘shifted asymptotic’’ reflecting a
modified asymptotic prefactor. This gives evidence of t
presence of some strong cyclic components in the pseu
random process ofG3. This is the only generator in this tes
showing also deviations ofDR8(t) from the asymptotic
value ~Fig. 4, lower graph!. If a decimation strategy withk
53 is applied, corresponding to generatorG4 ~diamonds!,
the correlations are strongly suppressed~Fig. 5!.

The GFSR generatorG5 ~Fig. 6! uses larger lags than
G3, shifting the onset of correlations to largert. The mag-
nitude of the deviation is even twice as large as that of g
eratorG3. These dramatic deviations are obviously indic
tors for the poor behavior ofG5 in some MC simulations
@18#. Pseudorandom numbers of much better quality are
pected from combination generators that can overcome
weakness of generators that are structurally too simple.

In Fig. 7 the performance of the popular combination ge
eratorG6 ~pluses! can be estimated. Whent is somewhat
larger than the lags of the LF component of the genera
significant deviations inR are observed~similar to G3 and
G5). These are presumably due to the deficient LF com
nent of the composite generator. However, compared toG5,
the deviation is about 10 times smaller. For the time be
there are no documented failures in physical simulations
use this generator@19#. However, comparing Fig. 7 with
Figs. 4 and 6, one can conclude that deviations in MC sim
lations are not implausible if higher precision is demande

PRNGs that are as fast but that have better long-ra
properties are discussed in the following. In Fig. 8 the res
for the combined congruential generatorG7 ~crosses! are
shown. Compared to the previous generators, there are
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TABLE II. Numerical values ofR(t) are tabulated in columns for the generatorsG4, G5, andG6. See Table I for an explanation.
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significant deviations. Random numbers of high quality
also produced by the recently proposed composite gener
G8 –G11 ~Figs. 9–12!. For all lags in the range 22–221 there
are no significant differences in theR/S statistic. These four
PRNGs are based on four different generation methods. G
eratorG8 applies a combination of generators with differe
algebraic structure, while the two-component MRGG9 and
the three-component Tausworthe generatorG10 combine
generators of the same class. Finally,G11 is a TGFSR gen-
erator that distinguishes itself by an extraordinarily long p
riod @51#. The fact that four generators of completely diffe
ent algebraic structure and with theoretically favora
properties give consistent results reassures that the obse
deviations of the other generators are indicators of real
fects.

It should be noted thatR8(t) necessarily has bee
sampled on a coarse grid on the logarithmic scale. Theref
it is possible that several types of correlations that wo
have shown up as a narrow structure have not been re
nized. Nevertheless, the observed deviations are intrigui

V. CONCLUSIONS

The sensitivity for correlations on all scales and the
bustness predestinates theR/S statistic as a tool to catch
defects in pseudorandom number generators. A prac
method has been described that makes it easy to obta
characteristic fingerprint of the correlations in a pseudor
dom sequence. The deviations can be described quan
tively and the performance of generators for some giv
range of lags can be compared.
re
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To illustrate the capability of theR/S statistical analysis
several popular generators have been subjected to an e
sive test. The randomness of all tested PRNGs with kno
defects could be refuted. Moreover, deviations in sev
generators that are thought to be reliable have been qu
fied. Thus theR/S analysis has to be considered more str
gent than many of the previously suggested tests in the s
that more generators fail it.

The selection of a PRNG for a specific simulation d
pends on the required level of precision and on the rang
the correlations that may have an impact on the quantity
interest, although this often cannot be assessed in adva
However, no generator showing a performance inferior
another generator in several tests should be used any lo
if it does not even distinguish itself at least by speed. W
correlations in a current state-of-the-art generator~like some
of this test! can lead to erroneous results in a future hig
precision calculation.
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APPENDIX A: NUMERICAL RESULTS

The numerical results for the mean ofR(t), as depicted
in previous figures, are reported in Tables I–IV. The value
one standard deviation of the mean is given in parenthe
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TABLE III. Numerical values ofR(t) are tabulated in columns for the generatorsG7, G8, andG9. See
Table I for an explanation.

t G7 G8 G9

22 27.948~17.8!1027 1.458~2.04!1026 28.946~16.7!1027

23 23.115~20.9!1027 26.022~23.9!1027 29.815~19.6!1027

24 24.627~2.64!1026 2.891~3.02!1026 6.311~24.7!1027

25 26.886~10.3!1026 23.553~39.7!1027 29.777~32.4!1027

26 4.847~10.2!1026 7.958~4.12!1026 6.729~4.26!1026

27 21.192~1.01!1025 21.554~1.01!1025 23.911~5.98!1026

28 21.874~1.00!1025 21.939~1.00!1025 28.900~82.7!1027

29 21.744~1.00!1025 3.122~14.1!1026 21.343~1.15!1025

210 29.156~10.0!1026 21.836~19.7!1026 22.701~16.1!1026

211 2.095~11.1!1026 7.061~27.7!1026 2.019~2.26!1025

212 23.466~15.6!1026 27.505~38.9!1026 3.240~3.18!1025

213 9.711~21.5!1026 2.112~3.17!1025 22.428~2.44!1025

214 8.670~30.1!1026 8.369~44.6!1026 28.337~34.5!1026

215 3.692~4.71!1025 5.826~6.74!1025 24.166~53.1!1026

216 23.956~6.65!1025 1.025~0.95!1024 22.485~7.50!1025

217 21.24~0.94!91024 4.591~6.13!1025 25.423~10.6!1025

218 21.782~1.30!1024 7.842~8.66!1025 8.842~15.0!1025

219 21.579~1.79!1024 1.968~1.22!1024 22.139~21.2!1025

220 21.544~2.54!1024 1.180~38.0!1025 2.337~29.9!1025

221 23.535~3.59!1024 24.704~5.37!1024 1.841~4.23!1024
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Values that differ from zero by more than two standard
viations are framed and the deviation in units of stand
deviations is printed behind the box.

APPENDIX B: TIMING RESULTS

In Table V the typical execution times relative to the ge
eratorG1 are given. All generators have been configured

TABLE IV. Numerical values ofR(t) are tabulated in column
for the generatorsG10 andG11. See Table I for an explanation.

t G10 G11

22 25.345~21.8!1027 21.221~2.46!1026

23 1.153~2.56!1026 2.644~28.9!1027

24 21.787~3.23!1026 6.721~36.5!1027

25 26.273~4.25!1026 24.801~3.49!1026

26 1.024~0.53!1025 6.012~4.70!1026

27 3.864~7.22!1026 28.174~6.43!1026

28 21.085~1.08!1025 21.465~0.89!1025

29 25.065~15.1!1026 9.626~17.0!1026

210 1.159~2.11!1025 5.613~2377!1028

211 26.933~29.6!1026 21.168~3.34!1025

212 1.959~4.16!1025 28.471~46.9!1026

213 3.068~2.52!1025 2.292~3.04!1025

214 21.824~35.6!1026 4.688~4.29!1025

215 9.589~5.23!1025 24.816~3.40!1025

216 7.998~7.39!1025 26.608~4.80!1025

217 8.373~10.4!1025 27.858~6.78!1025

218 2.910~14.8!1025 22.508~1.83!1024

219 27.407~20.9!1025 27.072~259!1026

220 22.363~29.5!1025 2.755~36.7!1025

221 9.895~41.7!1025 28.283~5.18!1024
-
d

-
o

deliver one PRN per function call and no function code h
been inlined. Although the figures may scatter between
ferent architectures, compilers, and optimization options t
should be indicative for the relative performance
workstation-type computers. It should be mentioned tha
the case of combined MLCGs and combined MR
(G7,G9) a floating point implementation is often muc
faster than an integer implementation on many mod
CPUs. These versions can compete with the fastest gen
tors of Table V@50#.

APPENDIX C: ADDITIONAL RESULTS

For comparison, the performance of the generatorsG1 –
G11 in the recently proposedn-block testand therandom-
walk test @18–20# has been calculated. For the group
PRNGs that have already been considered in Refs.@18–20#
the results were reproduced. The figures for all genera
tested recently are reported in Table VI. According to Re
@18–20#, the limit of acceptance in thex2 test has been cho
sen to bex2,7.815 in the case of the random-walk test a
x2,3.841 for then-block test. A generator is assumed

TABLE V. Relative execution times of the generators cons
ered in this test.

PRNG Relative time PRNG Relative time

G1 [ 1 G7 ' 2.2
G2 ' 1.1 G8 ' 0.7
G3 ' 0.6 G9 ' 2.4
G4 ' 1.4 G10 ' 0.7
G5 ' 0.6 G11 ' 0.9
G6 ' 1.3
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TABLE VI. Results for three runs of therandom-walk test~walk lengthN5750 using 106 samples! and of then-block test~block size
N5500 using 33106 samples! @18–20#. The framed figures indicate a failure in this test.
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pass the test if in at least two of three independent runs
value ofx2 is below the given limit.

The only PRNGs that show significant deviations fro
the expected distributions are generatorsG3 andG5. If the
decimation strategy is used, thenG3 also passes these tes
~corresponding toG4). These results have to be contrast
with the performance of the PRNGs in theR/S statistical
analysis, which is much more stringent in the sense that m
generators fail it.
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From the presented figures it is obvious that the w
length ~block size! in these tests is too small~by orders of
magnitude! to catch the severe defects at lags that corresp
to the large walk lengths in realistic simulations. It is al
evident that it is not sufficient to consider only a fixed lag
the amplitude of the deviations can vary strongly with t
lag. Finally, theR/S statistic appears to be superior, cons
ering its sensitivity for correlations.
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ev.
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