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Low-frequency anomalies and scaling of the dynamic conductivity in the quantum Hall effect
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A numerical study of the dynamic conductivity,,(w) in the lowest Landau level for a quantum Hall
system with short-range and long-range disorder potentials is performed. In the latter case two distinct types of
low-frequency anomalies are observed: a scaling regime with an anomalous diffusion exponent of
7=0.36+0.06 independent of the potential correlation rakgend a semiclassical regime giving evidence of
the existence of long time tails in the velocity correlation decaying proportionaloThe range of validity
of this behavior increases with increasing. The universal value of the critical conductivity is
oS,=(0.5£0.02)¢?/h for A=0 to 2 magnetic length§S0163-18296)00720-5

The localization-delocalization phase transition which oc-process in finite systems. The thermodynamic limit is
curs between two quantum Hall steps has attracted muchchieved by increasing the system size-« and finally
attention recently. In the transition region novel scaling fea-decreasingg.— 0™, in order to retain all contributions from
tures showed up in the behavior of the localization lerfgth, the spectrum of the Hamiltonian. The method has been ap-
in the spatial structure of the wave functid®,in the low-  plied to analyze the scaling relation of the static conductiv-
frequency response? and in the static conductivity*>1* ity.

The importance lies in the universality of most features with N the following it will be used to explore the scaling

respect to the stochastic impurity potential or the LandaiProperties of the dynamic conductivity for short-range and
level. long-range random impurity potentials, which are character-

The localization length diverges #&—E°| ~” at a critical ized by the correlation function

energy in the center of each Landau level, where 5
v=2.35+0.03 is independent of the stochastic impurity N —b22\2

: " o V(r+b)V(r)y= -——e .
potentiaf~>1*°and the Landau levéf The critical dissipa- (rOVIN=52%
tive conductivity oS, =e?/2h at E is claimed to be univer- _
sal, irrespective of the range of the poterflaP’and also ~ The latter case is of special interest since many experiments
within a semiclassical approximatidhThe scaling behavior aré performed with high mobility heterojunctions where the
of the dissipative conductivity-,, close to the critical point characteristic length of the potential fluctuatianss large
is governed by» and the generalized fractal dimension compared to_the magnetic length If the two-dimensional
D,. % In an important experiment Kookt al® were able to electron gas is separated from the randomly placed donors by

determine the critical exponent directly by studying the an undoped spacer of widtt, the potential correlation

- ; : : length is of the order ofl.
scaling of the peak width of the diagonal resistapggas a 0
function of the system size. The obtained value of Chalker and co-workefs® have shown that the wave

v=2.3=0.1 for the lowest three Landau levels agrees Wellfu.nCt'f)n under quantum Hall C.C?”d'“or?s shows anomalous
diffusive behavior at the transition point. In the hydrody-

with theoretical results. = limi 0 0 th \f ; b
In this paper we present a numerical study of the dynami@@Mic limit,o—0,g—0, the spectral functioB(q, ) obeys
the general scaling ansatz

conductivity o,(w) in the lowest Landau level for short-
range and long-range impurity potentials. It is found that in _
the latter case there are two distinct regimes: a scaling re- S(q,@)=q" " "x(w/q?). 1)
gime that is characterized by power law scaling of the con-

ductivity with an exponent related tp (Ref. 9 and a semi- The dynamical exponent is=2 for a system without Cou-
classical regime giving evidence of the existencé dflong  lomb interactiort>*! The property of anomalous diffusion
time tails in the velocity correlation function which show up arises from the power law behavior of the scaling function
in a linear decrease of the dynamic conductivity from the x, which vanishes like

fixed point values$, = e?/2h. Furthermore, we show thaj

and o, are independent of the range of the potential corre- O REIC 2
lations.

In a previous papét we developed a recursive Green for w/q*<1/fcp(eg) (c is a numerical constantThe expo-
function method for a direct numerical calculation of the nent% related to the static susceptibility is z&t@nd the
dissipative part of the dynamic conductividy,(L,w,c) asa value of =0.38+0.04 has been obtained numerically for
function of the frequencyw and the system widtlh.. We  electrons in the lowest Landau level moving in a Gaussian
introduced an imaginary pae of the frequency as an im- Wwhite noise potential.7 is related to the generalized fractal
portant control parameter for the thermodynamic limitingdimensionD, of the wave function byy=2-D,."1%1°
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FIG. 1. Schematic illustration of the size and frequency depen- ;5 10°° N %gg ' J
dence ofoy,(L,w) for a long-range potential. Increasing system S
width L is indicated byl ;<L,<Lj. 2
In the case ofw/q“>1/ficp(eg), the regime of normal 107 101 — 102
diffusion is characterized b§(q, ») (g% »?)D and a diffu- ol 2

sion constanD.
The dissipative part of the current correlation function FiG. 2. Ins, (wL2), the logarithm of the dynamic conductivity

®"(q,w) is related t0S(q, w) by in units of e/h vs InwL? for short-range potential\(=0) with
L=15 e=1x10"*% (O), L=20, £=5x10"° (¢), L=20,
P"(q,0)=(w’/g*)S(q,). ()  &=1x10° (O), L=30, £=2X10"° (A), and L=60,

£=5x10"% (V). The solid line indicates the power law with

In a finite sample the system sikzeprovides the lower cutoff  ,"=1.82+0.03 and the broken line is¢,=0.5. The inset shows
for the wave vectoq. Thus theq dependence ob”(q,w) IS the unscaled data as a function of
reflected by the dependence of the conductivity(L,w) of
L and can be obtained from a finite size scaling analysis. accurate results for the scaling behavior at low frequencies

In the following we will show that in the case of long- we eliminate this effect by fitting a power law with offset for
range potentials ando/q*>1/icp(eg) a nontrivial fre-  all curves simultaneously. This method has been used suc-
quency dependence of the homogeneous conductivitgessfully in Ref. 14. The results for the adjusted values of
appears—in contrast to the behavior in short-range potery, (wlL?) as a function ofwlL? are shown in the double
tials. The schematic illustration in Fig. 1 depicts the size andogarithmic plot Fig. 2. The data collapse onto a single curve
frequency dependence of,,(L,w) for a long-range poten- within almost two orders of magnitude and we obtain the
tial. In a system of widthL anomalous diffusive behavior power law
with power law scaling is found below a frequenay .
With increasing system size_{<L,<L3) the conductivity o(wLl?)=c(wl?)?
gap closes with the same power law as in short-range poten-
tials. At sufficiently largeL the conductivity maximum ap- with  #”"=1.82-0.03 and c¢~0.07 resulting in
proaches 0&/h and a linear decay ofr,(L—»,w) be- 7=0.36:0.06[7"=2- /2 from Eqgs.(1-3]. The critical
comes visible for smallo>w,_. This is in contrast to conductivity o5,=0.50=0.02 is attained after a transition
conventional Drude-like behavior with a quadratic decay andegion within 1< wL?<10. Above this value the conductiv-
indicates the existence 6f ? long time tails in the velocity ity does not depend on the system size any more and shows
correlations. As pointed out in the discussion below, thisalmost zero slopdwith increasing frequencyr,,(w) de-
agrees with semiclassical results. creases in Drude-like fashion, i.e., with a quadratic erm

As in our previous paper, the random Landau matrixThis behavior is in contrast to the decay in long-range po-
modef?? for the generation of matrix elements with finite tentials which will be discussed in the following.
correlation length\ is used(lengths are given in units of the At first the scaling regime below < w, will be examined
magnetic length). for a long-range potential with =2. The exponent; has

For short-range potentials,= 0, the dynamic conductiv- been calculated the same way as in the case of short-range
ity o.(L,w) in the center of the lowest Landau band haspotentials. In Fig. 3 it can be seen that the conductivities for
been calculated for system sides 15 toL =60 with differ-  various system sizes and frequencies again collapse onto a
ent values fore as shown in Fig. 2. The frequency has beenpower law. The value obtained for the exponent is
varied in the range 8 10 °<#w<0.01. The energy scale is #"=1.80+0.06. Thus we can conclude that within the given
normalized to the second moment of the density of statesrror the exponent; is not affected by the range of the
p(E), which is given by Wegner’s function fox=0 and potential correlations.

almost perfectly Gaussian fox=21* Between 10 and For larger frequenciesy> o, , the dynamic conductivity
2X 10° iterations were performed for each data point. Theshows semiclassical behavior. In Fig. 4 the conductivity
statistical errors are less than the symbol size. oy(L,w) is plotted versus frequency for a system of

The estimate for the exponent can be improved signifiwidth L=30. In order to avoid artifacts which result from
cantly if we use the fact that for small frequencies finite  large values ok, the calculations have been performed for
value ofe causes a small and almost constant contribution tdwo very small valueg =1x10 * ande=1x10"°. In the
the real part of the dissipative conductivity. To obtain highly latter case % 10° iterations have been performed for each



53 LOW-FREQUENCY ANOMALIES AND SCALING OF THE ... R13 281

The critical conductivity ofaS,=(0.50+0.01)e?/h can
be obtained from the =10"° data by a linear extrapolation
to w=0. It is equal to the value obtained for the short-range
potential and in accordance with the universal value to a high
precision.

In the high field limit, <<\, the impurity potential be-
comes smooth on the scale of the magnetic length and the
electrons move along the equipotential lines of the impurity
potential. Within a semiclassical model Evers and Bréhig
obtained the frequency dependence of the dissipative con-
ductivity o,(w) and a finite value for the static conductivity
at the transition point. Amazingly the semiclassical model

1 yields the same universal critical valuer,,(w—0)
— - o =(0.50+0.02)e?/h as the full quantum problem and a sig-
10 10 10 nificant deviation from a Drude-like behavior. For finite but
C small  one obtains

FIG. 3. Ino,,(wL?), the logarithm of the dynamic conductivity
in units of €%/h vs InwL? for a long-range potential =2, with o) = oS, —consta|. (4)
L=20, e=1%x10"°% (O), L=20, £=3%x10"°¢ (O), L=30,
e=1x10"5% (¢), L=30, £=1%X10°% (A), and L=40,
£=1%x10"% (V). The solid line indicates the power law with

7'=1.80+0.06 This result even suggests a cuspwat 0. Thus the averaged

velocity correlation functionb (t) =(v,(t)v,(0)) exhibits a

value of  and the results of 3-5 systems have been avert _ long time tail. Here we have derived this result by di-
aged to decrease the statistical errors furtfiedicated by ~'ectly evaluating the Kubo formula. This way we have
error bars. Above the scaling regimed(_>0.013) the linear shown that ang time tails are stable under |nplu5|on of quan-
decay ofo(w) is evident. It can be seen that an increase ofum mechanical interference effects depending on the range
¢ causes an almost constant additional contribution t&f the correlations in the potential.

o(®) and does not affect the power law of the decay. A _Comparing our results with the semiclassi_cal mbtel
significantly larger value of would smooth out the linear (Fi9- 4, Squares we can argue now that the motion of elec-

behavior to a Drude-like form. For comparisof,(w) has trons on equipotent?al curves iS. indeed a good pic_ture for
also been calculated for an intermediate correlation IengtﬁmOOth potentlals_ with a co_rr(_elapon Iength_of ap_proxma_ltely
\=1. The linear decay is still present, but the slope ish > 2. The dynamic conductivity in the semiclassical regime,
smaller. (The curve is somewhat shifted upwards due to a?~ L. IS mainly determined by the decay of the velocity

larger value of the imaginary frequency par) Iqr(:(rarelanons of electrons moving classically on equipotential
ines.

Indications that non-Drude behavior might also be
present, if one takes into account quantum mechanical propa-
gation in long-range potentials, have been given in a split
operator wave packet stud§although a critical conductiv-
ity of less than 40% of the universal value was found. Also a
close reinspection of the numerical data of Afititor the
long-range samples shows such a deviation from Drude-like
behavior although with large statistical errors.

Since up to now there is no analytic theory for the integer
quantum Hall effect that could make predictions about the
behavior of the dynamic conductivity,,(w), it would be
desirable to investigate the low-frequency response experi-
mentally. It can be estimated that the linear decay should
show up at frequencies in the MHz to GHz range. Tempera-
0_:20 tures in the mK range are necessary to avoid inelastic scat-

tering and the softening of the Fermi edge. Both effects
would result in a Drude-like behavior that could hide the
linear decay.

FIG. 4. o (w), the dynamic conductivity in units ch vs I conclusion, we have unambiguously shown that long
 for a system of widthL=30 and a long-range potential with time tails in the velocity correlations are present in a system
A=2,=1X10"5 (@), ande=1x 104 (O). For comparison the under quantum Hall conditior{tnteractions neglectedThus
result for intermediate range=1, e =1x10 4 (A), and the semi- We predict a measurable deviation in the low-frequency be-
classical resultRef. 11 is drawn (J) . The broken lines serve as a havior of the dynamic conductivity from conventional
guide to the eye. Drude-like behavior. Furthermore, we find thaf, at the
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center of the lowest Landau level is equal
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to shown to be independent of the potential correlation length

(0.50+0.02)e?/h for short-range and long-range potentials, within the investigated range.
in excellent agreement with the hypothesis of universality. \y/e would like to thank Ferdinand Evers for many helpful

Also the exponent of anomalous diffusiopn=0.36+0.06 is

discussions.
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