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A numerical study of the dynamic conductivitysxx(v) in the lowest Landau level for a quantum Hall
system with short-range and long-range disorder potentials is performed. In the latter case two distinct types of
low-frequency anomalies are observed: a scaling regime with an anomalous diffusion exponent of
h50.3660.06 independent of the potential correlation rangel and a semiclassical regime giving evidence of
the existence of long time tails in the velocity correlation decaying proportional tot22. The range of validity
of this behavior increases with increasingl. The universal value of the critical conductivity is
sxx
c 5(0.560.02)e2/h for l50 to 2 magnetic lengths.@S0163-1829~96!00720-5#

The localization-delocalization phase transition which oc-
curs between two quantum Hall steps has attracted much
attention recently. In the transition region novel scaling fea-
tures showed up in the behavior of the localization length,1–5

in the spatial structure of the wave function,6–8 in the low-
frequency response,9–12 and in the static conductivity.5,13,14

The importance lies in the universality of most features with
respect to the stochastic impurity potential or the Landau
level.

The localization length diverges asuE2Ecu2n at a critical
energy in the center of each Landau level, where
n52.3560.03 is independent of the stochastic impurity
potential3–5,14,15and the Landau level.16 The critical dissipa-
tive conductivitysxx

c 5e2/2h at Ec is claimed to be univer-
sal, irrespective of the range of the potential13,15,17and also
within a semiclassical approximation.11 The scaling behavior
of the dissipative conductivitysxx close to the critical point
is governed byn and the generalized fractal dimension
D2 .

14 In an important experiment Kochet al.18 were able to
determine the critical exponentn directly by studying the
scaling of the peak width of the diagonal resistancerxx as a
function of the system size. The obtained value of
n52.360.1 for the lowest three Landau levels agrees well
with theoretical results.

In this paper we present a numerical study of the dynamic
conductivity sxx(v) in the lowest Landau level for short-
range and long-range impurity potentials. It is found that in
the latter case there are two distinct regimes: a scaling re-
gime that is characterized by power law scaling of the con-
ductivity with an exponent related toh ~Ref. 9! and a semi-
classical regime giving evidence of the existence oft22 long
time tails in the velocity correlation function which show up
in a linear decrease of the dynamic conductivity from the
fixed point valuesxx

c 5e2/2h. Furthermore, we show thath
andsxx

c are independent of the range of the potential corre-
lations.

In a previous paper14 we developed a recursive Green
function method for a direct numerical calculation of the
dissipative part of the dynamic conductivitysxx(L,v,«) as a
function of the frequencyv and the system widthL. We
introduced an imaginary part« of the frequency as an im-
portant control parameter for the thermodynamic limiting

process in finite systems. The thermodynamic limit is
achieved by increasing the system sizeL→` and finally
decreasing«→01, in order to retain all contributions from
the spectrum of the Hamiltonian. The method has been ap-
plied to analyze the scaling relation of the static conductiv-
ity.

In the following it will be used to explore the scaling
properties of the dynamic conductivity for short-range and
long-range random impurity potentials, which are character-
ized by the correlation function

V~r1b!V~r!5
u2

2pl2e
2b2/2l2.

The latter case is of special interest since many experiments
are performed with high mobility heterojunctions where the
characteristic length of the potential fluctuationsl is large
compared to the magnetic lengthl . If the two-dimensional
electron gas is separated from the randomly placed donors by
an undoped spacer of widthd, the potential correlation
length is of the order ofd.

Chalker and co-workers9,10 have shown that the wave
function under quantum Hall conditions shows anomalous
diffusive behavior at the transition point. In the hydrody-
namic limit,v→0, q→0, the spectral functionS(q,v) obeys
the general scaling ansatz

S~q,v!5q221h̃x~v/qz!. ~1!

The dynamical exponent isz52 for a system without Cou-
lomb interaction.20,21 The property of anomalous diffusion
arises from the power law behavior of the scaling function
x, which vanishes like

x~v/qz!}~v/qz!2h/2 ~2!

for v/qz,1/\cr(eF) (c is a numerical constant!. The expo-
nent h̃ related to the static susceptibility is zero19 and the
value of h50.3860.04 has been obtained numerically for
electrons in the lowest Landau level moving in a Gaussian
white noise potential.9 h is related to the generalized fractal
dimensionD2 of the wave function byh522D2 .
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In the case ofv/qz.1/\cr(eF), the regime of normal
diffusion is characterized byS(q,v)}(q2/v2)D and a diffu-
sion constantD.

The dissipative part of the current correlation function
F9(q,v) is related toS(q,v) by

F9~q,v!5~v2/q2!S~q,v!. ~3!

In a finite sample the system sizeL provides the lower cutoff
for the wave vectorq. Thus theq dependence ofF9(q,v) is
reflected by the dependence of the conductivitysxx(L,v) of
L and can be obtained from a finite size scaling analysis.

In the following we will show that in the case of long-
range potentials andv/qz.1/\cr(eF) a nontrivial fre-
quency dependence of the homogeneous conductivity
appears—in contrast to the behavior in short-range poten-
tials. The schematic illustration in Fig. 1 depicts the size and
frequency dependence ofsxx(L,v) for a long-range poten-
tial. In a system of widthL anomalous diffusive behavior
with power law scaling is found below a frequencyvL .
With increasing system size (L1,L2,L3) the conductivity
gap closes with the same power law as in short-range poten-
tials. At sufficiently largeL the conductivity maximum ap-
proaches 0.5e2/h and a linear decay ofsxx(L→`,v) be-
comes visible for smallv.vL . This is in contrast to
conventional Drude-like behavior with a quadratic decay and
indicates the existence oft22 long time tails in the velocity
correlations. As pointed out in the discussion below, this
agrees with semiclassical results.11

As in our previous paper, the random Landau matrix
model3,22 for the generation of matrix elements with finite
correlation lengthl is used~lengths are given in units of the
magnetic lengthl ).

For short-range potentials,l50, the dynamic conductiv-
ity sxx(L,v) in the center of the lowest Landau band has
been calculated for system sizesL515 toL560 with differ-
ent values for« as shown in Fig. 2. The frequency has been
varied in the range 331025,\v,0.01. The energy scale is
normalized to the second moment of the density of states
r(E), which is given by Wegner’s function forl50 and
almost perfectly Gaussian forl52.14 Between 105 and
23105 iterations were performed for each data point. The
statistical errors are less than the symbol size.

The estimate for the exponent can be improved signifi-
cantly if we use the fact that for small frequenciesv a finite
value of« causes a small and almost constant contribution to
the real part of the dissipative conductivity. To obtain highly

accurate results for the scaling behavior at low frequencies
we eliminate this effect by fitting a power law with offset for
all curves simultaneously. This method has been used suc-
cessfully in Ref. 14. The results for the adjusted values of
sxx(vL

2) as a function ofvL2 are shown in the double
logarithmic plot Fig. 2. The data collapse onto a single curve
within almost two orders of magnitude and we obtain the
power law

sxx~vL2!5c~vL2!h9,

with h951.8260.03 and c'0.07 resulting in
h50.3660.06 @h9522h/2 from Eqs.~1–3!#. The critical
conductivity sxx

c 50.5060.02 is attained after a transition
region within 1,vL2,10. Above this value the conductiv-
ity does not depend on the system size any more and shows
almost zero slope@with increasing frequencysxx(v) de-
creases in Drude-like fashion, i.e., with a quadratic term#.
This behavior is in contrast to the decay in long-range po-
tentials which will be discussed in the following.

At first the scaling regime belowv,vL will be examined
for a long-range potential withl52. The exponenth has
been calculated the same way as in the case of short-range
potentials. In Fig. 3 it can be seen that the conductivities for
various system sizes and frequencies again collapse onto a
power law. The value obtained for the exponent is
h951.8060.06. Thus we can conclude that within the given
error the exponenth is not affected by the range of the
potential correlations.

For larger frequencies,v.vL , the dynamic conductivity
shows semiclassical behavior. In Fig. 4 the conductivity
sxx(L,v) is plotted versus frequencyv for a system of
width L530. In order to avoid artifacts which result from
large values of«, the calculations have been performed for
two very small values«5131024 and«5131025. In the
latter case 53105 iterations have been performed for each

FIG. 1. Schematic illustration of the size and frequency depen-
dence ofsxx(L,v) for a long-range potential. Increasing system
width L is indicated byL1,L2,L3 .

FIG. 2. lnsxx(vL
2), the logarithm of the dynamic conductivity

in units of e2/h vs lnvL2 for short-range potential (l50) with
L515, «5131024 (s), L520, «5531025 (L), L520,
«5131025 (h), L530, «5231025 (n), and L560,
«5531026 (,). The solid line indicates the power law with
h951.8260.03 and the broken line issxx

c 50.5. The inset shows
the unscaled data as a function ofv.
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value ofv and the results of 3–5 systems have been aver-
aged to decrease the statistical errors further~indicated by
error bars!. Above the scaling regime (vL.0.013) the linear
decay ofsxx(v) is evident. It can be seen that an increase of
« causes an almost constant additional contribution to
sxx(v) and does not affect the power law of the decay. A
significantly larger value of« would smooth out the linear
behavior to a Drude-like form. For comparisonsxx(v) has
also been calculated for an intermediate correlation length
l51. The linear decay is still present, but the slope is
smaller. ~The curve is somewhat shifted upwards due to a
larger value of the imaginary frequency part«.)

The critical conductivity ofsxx
c 5(0.5060.01)e2/h can

be obtained from the«51025 data by a linear extrapolation
to v50. It is equal to the value obtained for the short-range
potential and in accordance with the universal value to a high
precision.

In the high field limit, l!l, the impurity potential be-
comes smooth on the scale of the magnetic length and the
electrons move along the equipotential lines of the impurity
potential. Within a semiclassical model Evers and Brenig11

obtained the frequency dependence of the dissipative con-
ductivity sxx(v) and a finite value for the static conductivity
at the transition point. Amazingly the semiclassical model
yields the same universal critical valuesxx(v→0)
5(0.5060.02)e2/h as the full quantum problem and a sig-
nificant deviation from a Drude-like behavior. For finite but
smallv one obtains

sxx~v!5sxx
c 2constuvu. ~4!

This result even suggests a cusp atv50. Thus the averaged
velocity correlation functionF(t)5^vx(t)vx(0)& exhibits a
t22 long time tail. Here we have derived this result by di-
rectly evaluating the Kubo formula. This way we have
shown that long time tails are stable under inclusion of quan-
tum mechanical interference effects depending on the range
of the correlations in the potential.

Comparing our results with the semiclassical model11

~Fig. 4, squares!, we can argue now that the motion of elec-
trons on equipotential curves is indeed a good picture for
smooth potentials with a correlation length of approximately
l.2. The dynamic conductivity in the semiclassical regime,
v.vL , is mainly determined by the decay of the velocity
correlations of electrons moving classically on equipotential
lines.

Indications that non-Drude behavior might also be
present, if one takes into account quantum mechanical propa-
gation in long-range potentials, have been given in a split
operator wave packet study,12 although a critical conductiv-
ity of less than 40% of the universal value was found. Also a
close reinspection of the numerical data of Ando23 for the
long-range samples shows such a deviation from Drude-like
behavior although with large statistical errors.

Since up to now there is no analytic theory for the integer
quantum Hall effect that could make predictions about the
behavior of the dynamic conductivitysxx(v), it would be
desirable to investigate the low-frequency response experi-
mentally. It can be estimated that the linear decay should
show up at frequencies in the MHz to GHz range. Tempera-
tures in the mK range are necessary to avoid inelastic scat-
tering and the softening of the Fermi edge. Both effects
would result in a Drude-like behavior that could hide the
linear decay.

In conclusion, we have unambiguously shown that long
time tails in the velocity correlations are present in a system
under quantum Hall conditions~interactions neglected!. Thus
we predict a measurable deviation in the low-frequency be-
havior of the dynamic conductivity from conventional
Drude-like behavior. Furthermore, we find thatsxx

c at the

FIG. 3. lnsxx(vL
2), the logarithm of the dynamic conductivity

in units of e2/h vs lnvL2 for a long-range potential,l52, with
L520, «5131025 (s), L520, «5331026 (h), L530,
«5131025 (L), L530, «5131026 (n), and L540,
«5131026 (,). The solid line indicates the power law with
h951.8060.06.

FIG. 4. sxx(v), the dynamic conductivity in units ofe2/h vs
v for a system of widthL530 and a long-range potential with
l52, «5131025 (d), and«5131024 (s). For comparison the
result for intermediate rangel51, «5131024 (n), and the semi-
classical result~Ref. 11! is drawn (h) . The broken lines serve as a
guide to the eye.
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center of the lowest Landau level is equal to
(0.5060.02)e2/h for short-range and long-range potentials,
in excellent agreement with the hypothesis of universality.
Also the exponent of anomalous diffusionh50.3660.06 is

shown to be independent of the potential correlation length
within the investigated range.

We would like to thank Ferdinand Evers for many helpful
discussions.
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