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Abstract. Stream ciphers that deploy linear feedback shift registers
(LFSRs) have been shown to be vulnerable under fast correlation at-
tacks [20], [21], [14], algebraic attacks [7], [28], fast algebraic attacks [6],
[1], and fault attacks [13]. We discuss certain nonlinear feedback shift
registers (NLFSRs) recommended as substitutes for LFSRs in stream
cipher systems.

1 Introduction

The period of the output sequence of an N -stage feedback shift regis-
ter over the binary field F2 can be at most 2N . N -stage shift regis-
ter sequences whose periods attain the maximum value 2N are called de
Bruijn sequences. The number of translation distinct span-N de Bruijn
sequences, and, consequently, the number of different N -stage feedback
shift registers producing de Bruijn sequences is given by

Z(N) = 22N−1−N , (1)

as was shown by Flye Sainte-Marie [9] and de Bruijn [2], [3]. However, de
Bruijn sequences have the drawback that the combination of several such
sequences (combined by some Boolean combining function) does not lead
to a sequence of larger period. This is quite obvious, considering that all
sequences have periods that are powers of 2.

Therefore, the next best choice are N -stage shift register sequences of
period 2N − 1 and 2N − 2. The fact that these sequences stem from an
N -stage feedback shift register (have span N) and that their periods are
2N − 1 and 2N − 2, respectively, implies, in particular, an almost ideal
k-tupel distribution over the full period for 1 ≤ k ≤ N .



Definition 1. Let N ≥ 3. An N -stage feedback shift register of type A
is a nonlinear feedback shift register (NLFSR) of length N (i.e., compris-
ing N delay elements) whose feedback function decomposes FN

2 into two
cycles: one cycle contains all 2N − 1 nonzero vectors of FN

2 and the other
cycle contains only the zero vector.

An N -stage feedback shift register of type B is a NLFSR whose feed-
back function is not affine and generates two cycles: the short cycle con-
tains only the vector (1, . . . , 1) ∈ FN

2 , the long cycle contains all other
vectors of FN

2 .
An N -stage feedback shift register of type C is a NLFSR whose feed-

back function decomposes FN
2 into three cycles: one cycle contains the

zero vector, one cycle the vector (1, . . . , 1) ∈ FN
2 , and the third cycle

contains all the remaining vectors of FN
2 .

Finally, an N -stage feedback shift register of type D is a NLFSR
whose feedback function is not affine and generates two cycles: the short
cycle contains the two vectors (0, 1, 0, . . . ) and (1, 0, 1, . . . ) of FN

2 , the long
cycle contains the remaining 2N − 2 vectors of FN

2 .
By a nontrivial output sequence of a type A, B, C, or D shift register

we mean any sequence produced by the shift register when any vector
appearing in the corresponding long cycle is used to initialize the register.

ut

Table 1 contains some properties of N -stage NLFSRs of types A, B, C,
and D. Notice that the NLFSRs of type C are the only ones that induce
a cycle decomposition in FN

2 consisting of an odd number of cycles. It
is known [11] that for such shift registers the corresponding feedback
function always depends explicitly on all N variables. Thus, in order to
minimize hardware costs, type-D shift registers are preferred over type-C
registers.

In this paper we study the influence of a Boolean combining func-
tion on nontrivial output sequences of NLFSRs of type A, B, C, or D.
Over the finite field F2 the effect of a Boolean combining function on
individual sequences reduces to two simpler problems: termwise addition
of sequences, and termwise multiplication of sequences. Since termwise
addition is comparatively easy to analyze, we restrict ourselves to the
study of termwise multiplication. It suffices to treat the product of two
NLFSR sequences, as we can then proceed by induction to obtain results
on the product of any finite number of sequences.

Any purely or ultimately periodic binary sequence σ possesses a
unique minimal polynomial mσ ∈ F2[x]. The minimal polynomial of
σ contains a lot of information about σ:



NLFSRs of type A B C D

Length of shift register N N N N

Period of output sequence 2N − 1 2N − 1 2N − 2 2N − 2

Forbidden initializations (0, 0, . . . , 0) (1, 1, . . . , 1) (0, 0, . . . , 0) (0, 1, 0 . . . )

(1, 1, . . . , 1) (1, 0, 1, . . . )

Linear complexity 2N − 2 2N − 1 2N − 2 2N − 2

Multiplicities of roots

of minimal polynom 1 1 1 or 2 1 or 2

Degrees of irreducible

factors of minimal N N N − 1 N − 1

polynomial divide

x− 1 divides the minimal

polynomial never always sometimes sometimes

Feedback function con-

tains constant term 1 no yes no yes

Number of distinct cycles 2 2 3 2

Distribution of 0’s and almost almost

1’s in the full period equidistributed equidistributed equidistributed equidistributed

Sparse feedback functions

exist yes yes no yes

Number of shift registers Z(N)− ϕ(2N−1)
N

Z(N)− ϕ(2N−1)
N

Z(N) less than Z(N)

Table 1. Properties of certain NLFSRs



1. The multiplicity of the element 0 as a root of mσ equals the length of
the preperiod of σ. In particular, σ is purely periodic if and only if
mσ(0) 6= 0.

2. The order of the polynomial mσ coincides with the period of σ.
3. The polynomial mσ is the characteristic polynomial of the shortest

LFSR that can generate σ, so that the degree of mσ is the linear
complexity of σ, denoted by L(σ).

We will derive formulæ for the minimal polynomial of the product of
two NLFSR sequences produced by type A, B, C, or D shift registers.
From the minimal polynomial one readily derives information on the pe-
riod and linear complexity of the sequence. As all shift registers under
consideration are nonsingular all sequences will be purely periodic.

In the theory of stream ciphers the determination of the linear com-
plexity of the key stream is a fundamental problem. A good survey article
on the theory of stream ciphers is Robshaw [23].

2 Results

This is a position paper. Proofs are omitted.

Proposition 1. If σ is any nontrivial output sequence of an N -stage
NLFSR of type A, then the minimal polynomial mσ has the form

mσ =
r∏

i=1

fi, (2)

where all fi ∈ F2[x] are distinct irreducible polynomials with deg(fi) ≥ 2
and deg(fi) divides N .

Experimentally, we observed that the majority of type A shift register
sequences σ have the minimal polynomial

mσ(x) = x2N−2 + · · ·+ x2 + x + 1 =
x2N − x

x(x− 1)
.

NLFSRs of type A and B are closely related. The sequence τ =
(tn)∞n=0 is the output sequence of a type B shift register precisely if σ =
(sn)∞n=0 = (tn + 1)∞n=0 is the output sequence of a type A shift register.
It follows that mτ (x) = (x − 1)mσ(x), where mσ has the form (2). The
presence or absence of the factor x − 1 in the minimal polynomial has
influence only on the behaviour of termwise addition but not on termwise
multiplication.



Proposition 2. Let σ be any nontrivial output sequence of an N -stage
NLFSR of type C or D. Then the minimal polynomial of σ has the form

mσ =
r∏

i=1

fi
ei , (3)

where fi ∈ F2[x] are distinct irreducible polynomials whose degrees divide
N − 1, fi(0) 6= 0, and 1 ≤ ei ≤ 2 for 1 ≤ i ≤ r. At least one exponent
ei = 2.

Theorem 1. If g(x) = xN + cN−1x
N−1 + · · · + c1x + c0 is a primitive

polynomial over F2 of degree ≥ 3, then

G(x0, x1, . . . , xN−1) = c0x0 + c1x1 · · ·+ cN−1xN−1 + x1x2 · · ·xN−1

is the feedback function of an N -stage NLFSR of type C. Any nontrivial
initialization of the shift register results in an output sequence σ with the
minimal polynomial

mσ(x) = x2N−2 − 1 =
∏

f(x)2, (4)

where the product is extended over all irreducible polynomials f ∈ F2[x]
whose degrees divide N−1, with the exception of the polynomial f(x) = x.

We do not recommend the above theorem as a design rule for NLF-
SRs for cryptographic purposes. The output sequence behaves over a
long part of the period like a LFSR sequence until, finally, the product
term x1 · · ·xN−1 becomes effective. However, the theorem shows that for
all N ≥ 3, there is an N -stage NLFSR of type C whose nontrivial out-
put sequences attain the maximum linear complexity value for such shift
registers, namely 2N − 2.

The following facts are standard. See Selmer [27, Chap. 4]. Let f, g ∈
F2[x] be nonconstant polynomials without multiple roots and not divisible
by x. Then f ∨ g ∈ F2[x] is defined to be the polynomial whose roots are
the distinct elements of the form αβ, where α is a root of f and β is a
root of g. The polynomial f ∨ g is irreducible if and only if f and g are
irreducible polynomials of relatively prime degrees. If f ∨ g is irreducible
and f(0)g(0) 6= 0, then deg(f ∨ g) = deg(f) deg(g). In this case, f ∨ g
is the minimal polynomial of στ = (sntn)∞n=0 whenever σ = (sn)∞n=0

is a periodic sequence with minimal polynomial f and τ = (tn)∞n=0 is
a periodic sequence with minimal polynomial g. Example: If f(x) =
x2 +x+1 and g(x) = x3 +x+1, then f(x)∨ g(x) = x6 +x4 +x2 +x+1.



Theorem 2. Let σ = (sn)∞n=0 and τ = (tn)∞n=0 be nontrivial output se-
quences of an M -stage and N -stage NLFSR, respectively, of type A or
B. Assume that the lengths of the shift registers are relatively prime, i.e.,
gcd(M,N) = 1. If mσ =

∏r
i=1 fi and mτ =

∏s
j=1 gj, then the product

sequence στ = (sntn)∞n=0 has the minimal polynomial

mστ =
∏

1≤i≤r
1≤j≤s

(fi ∨ gj). (5)

In fact, (5) is the canonical factorization of mστ .

Comparing the degrees of both sides in (5), using deg(fi ∨ gj) =
deg(fi) deg(gj), yields

L(στ) = L(σ)L(τ). (6)

This result on the linear complexity of the product sequence carries over
to any finite number of NLFSR sequences of type A or B, provided that
the lengths of the corresponding shift registers are pairwise relatively
prime. Equation (6) can also be derived from [10], where it is shown that
for purely periodic sequences σ1, . . . , σk with pairwise relatively prime
periods the linear complexity of the product sequence ω = σ1 · · ·σk equals
the product of the linear complexities of the individual sequences. As a
matter of fact, two positive integers a and b are relatively prime if and
only if 2a − 1 and 2b − 1 are. Thus, our assumption that the lengths
of the NLFSRs be pairwise relatively prime implies that the periods are
pairwise relatively prime as well, so that the required premise in [10] is
true.

The situation is different if we work in the general finite field Fq. The
counterparts of the N -stage NLFSRs of type A considered here are now
N -stage NLFSRs over Fq whose nontrivial output sequences have period
qN−1. To obtain reasonable lower bounds on the linear complexity of the
product of such NLFSR sequences in Fq, we need again the requirement
that the lengths of the shift registers be relatively prime. However, for
any prime power q with q 6= 2, the numbers qa − 1 and qb − 1 are never
relatively prime, no matter which positive integers a and b are used.

The next theorem is concerned with the multiplication of one NLFSR
sequence of type A or B with another one of type C or D.

Theorem 3. Let σ be a nontrivial output sequence of an M -stage NLFSR
of type A or B, and let τ be a nontrivial output sequence of an N -stage
NLFSR of type C or D. Assume that gcd(M,N−1) = 1. If mσ =

∏r
i=1 fi



and mτ =
∏s

j=1 g
ej

j are the canonical factorizations of the minimal poly-
nomials of σ and τ , respectively, then the canonical factorization of the
minimal polynomial of the product sequence στ is given by

mστ =
∏

1≤i≤r
1≤j≤s

(fi ∨ gj)ej . (7)

While the analysis of the combinational behaviour of NLFSRs of type
A is surprisingly easy, NLFSRs of type C and D are more challenging.
The periods of the sequences are no longer relatively prime. Accord-
ing to Proposition 2, the minimal polynoms have multiple roots, so that
the results of Herlestam [12] do not apply. Furthermore, there will be
coincidences of root products of the same multiplicity, so that the well
established root-counting method (see [15], [22]) fails to lead to lower
bounds on the linear complexity of the product sequence in this case.
Nonetheless, using the apparatus of generating functions lower bounds
can be derived.

We recall some well known facts from the theory of linear recurring
sequences. See Lidl and Niederreiter [18, Chap. 8].

Let f be a polynomial over F2 with deg(f) = d ≥ 1. We define M(f)
to be the set of all periodic binary sequences with minimal polynomial
f . By S(f) we denote the set of all binary sequences with characteristic
polynomial f . Under termwise operations, S(f) is a vector space over
F2 of dimension d. Clearly, M(f) ⊆ S(f). If f is irreducible, then
S(f) = M(f) ∪ {0}, where 0 = (0, 0, . . . ) is the zero sequence.

There are two fundamental linear operators on F∞2 . The shift operator
T , defined by Tσ = (sn+1)∞n=0, and the decimation operator D, defined
by Dσ = (s2n)∞n=0, for all binary sequences σ = (sn)∞n=0. If f is any
nonzero polynomial over F2, then f(T ) is again a linear operator on F∞2 ,
and S(f) = {σ ∈ F∞2 : f(T )σ = 0}. It is well known and easy to show
that S(f) is closed under the actions of T and D, that is, Tσ ∈ S(f) and
Dσ ∈ S(f) whenever σ ∈ S(f).

If σ is any periodic binary sequence, then we denote the minimal poly-
nomial of the decimated sequence Dσ by mDσ. The minimal polynomial
of the shifted sequence Tσ is denoted by mTσ.

If f and g are binary polynomials with f = g2, then we also write
g =

√
f . Consider the canonical factorization of the binary polynomial

h = h2
1 · · ·h2

chc+1 · · ·hc+m,

where the hi, 1 ≤ i ≤ c + m, are distinct irreducible polynomials over F2.
The squarefree part of h is denoted by 〈h〉, defined by 〈h〉 = h1 · · ·hc+m,



and can be computed by 〈h〉 = h/
√

gcd(h, h′), where h′ is the first deriva-
tive of h. The quadratic part of the polynomial h is gcd(h, h′) = h2

1 · · ·h2
c .

We now deal with the case where both sequences σ and τ are NLFSR
sequences of type C or D. Let M and N be the lengths of the shift registers
producing σ and τ . According to Proposition 2, the minimal polynomial
of σ has the form

mσ = f2
1 · · · f2

afa+1 · · · fa+k, (8)

where the fi are distinct irreducible binary polynomials whose degrees
divide M − 1 and with fi(x) 6= x for 1 ≤ i ≤ a + k, a ≥ 1, and k ≥ 0.
Likewise,

mτ = g2
1 · · · g2

bgb+1 · · · gb+l, (9)

where all gj ∈ F2[x] are distinct, irreducible, not equal to x, and with
deg(gj) dividing N − 1, b ≥ 1, and l ≥ 0.

Theorem 4. Let σ and τ be nontrivial output sequences of an M -stage
and N -stage NLFSR, respectively, of type C or D. Assume that gcd(M −
1, N − 1) = 1. Let the minimal polynomial of σ and τ be given by (8)
and (9). Then the minimal polynomial of the product sequence στ is

mστ =

a+k∏
i=1

b+l∏
j=1

(fi ∨ gj)2

a+k∏
i=a+1

b+l∏
j=b+1

(fi ∨ gj)
∏

(i,j)∈I0×J0

(fi ∨ gj)2
∏

(i,j)∈I1×J1

(fi ∨ gj)2
.

The index sets I0 and I1 appearing in the formula are disjoint subsets
of {1, . . . , a}, whereas J0 and J1 are disjoint subsets of {1, . . . , b}. The
index sets, respectively the last two products in the denominator, can be
computed from the sequences σ and τ as follows: First, determine the
sequences Dσ, Dτ , DTσ, DTτ , and their minimal polynomials. Next,
compute the binary polynomials

S0 =
〈mσ〉
mDσ

, S1 =
〈mσ〉
mDTσ

, T0 =
〈mτ 〉
mDτ

, T1 =
〈mτ 〉
mDTτ

. (10)

Finally, compute the canonical factorizations of the polynomials in F2[x]:

S0 =
∏
i∈I0

fi, S1 =
∏
i∈I1

fi, T0 =
∏
j∈J0

gj , T1 =
∏
j∈J1

gj . (11)

This defines the index sets I0, I1, J0, and J1. From here, the last two
products in the denominator of the big fraction can be derived.



By considering the degree of mστ , we obtain a formula for the linear
complexity of the product sequence στ .

Corollary 1. Under the provisions of Theorem 4 we have

L(στ) =L(σ)L(τ)− 2 deg
(√

gcd(mσ,m′
σ)

)
deg

(√
gcd(mτ ,m′

τ )
)

− 2 deg(S0) deg(T0)− 2 deg(S1) deg(T1),

where S0, T0, S1, and T1 are the polynomials in (10).

Notice that for the calculation of the linear complexity of στ , we
do not need to know the canonical factorizations of mσ or mτ . The
required minimal polynomials mσ, mτ , mDσ, etc., can be assessed by
the Berlekamp-Massey algorithm. However, given the fact that the best
known upper bounds for the linear complexities of the sequences are the
periods of the sequences, the formula of Laksov [16, Lemma 3] might be
more favourable.

It is interesting to note that the costs for retrieving a NLFSR of the
types considered here by a random computer search are about the same as
the costs for computing the minimal polynomial associated with the shift
register. Both tasks are feasible on a standard workstation for shift reg-
ister lengths up to N = 30. (By the minimal polynomial associated with
the shift register we mean, of course, the uniquely determined minimal
polynomial of any nontrivial output sequence of the shift register.)

Our proof of Theorem 4 proceeds through a series of lemmas. We
state just one of the lemmas, the most crucial one. In the lemma, (n)
denotes the binary sequence (n)∞n=0 = (0, 1, 0, 1, . . . ). Likewise, (n + 1) =
(1, 0, 1, 0, . . . ).

Lemma 1. Let f and g be irreducible polynomials over F2 of relatively
prime degrees none of them equal to x. For any σ1 ∈ S(f), σ2 ∈ M(f),
τ1 ∈ S(g), and τ2 ∈ M(g), the sequence

σ1τ1 + (n)σ2τ1 + (n + 1)σ1τ2 (12)

is either the zero sequence or has minimal polynomial (f ∨ g)2. The
sequence is the zero sequence if and only if (σ1 = 0 and τ1 = 0 ) or
(σ1 = σ2 and τ1 = τ2).

Definition 2. Let σ be a nontrivial output sequence of an N -stage
NLFSR of type C or D. Let mσ = f2

1 · · · f2
afa+1 · · · fa+k. Then σ has

a unique representation of the form

σ =
a∑

i=1

[σ(0)
i + (n)σ(1)

i ] +
a+k∑

i=a+1

σi (13)



with σ
(0)
i ∈ S(fi), σ

(1)
i ∈ M(fi) for 1 ≤ i ≤ a, and σi ∈ M(fi) for

a + 1 ≤ i ≤ a + k. We call the underlying NLFSR friendly if for all
i = 1, . . . , a we have σ

(0)
i 6= 0 and σ

(0)
i 6= σ

(1)
i . We call the NLFSR almost

friendly if the requirement is fulfilled for all but one index i. ut

Recall Theorem 4 for a motivation of the above definition. The two
index sets I0 and I1 in Theorem 4 are empty if and only if the underlying
NLFSR that produces the sequence σ is friendly.

The property of being friendly or almost friendly is independent of
the particular (nontrivial) initialization of the type C or D shift register.
The idea behind the definition of almost friendly is the following: the
minimal polynomial mσ of a nontrivial output sequence of a type C or
D shift register will often contain the factor (x − 1)2. As soon as this
happens the NLFSR can not be friendly anymore, as then, necessarily, in
(13) the sequence (n) or (n + 1) will occur in the first sum. That means
that there is one index i between 1 and a for which, either σ

(0)
i is the zero

sequence, or the sequences σ
(0)
i and σ

(1)
i are identical with the sequence

all of whose terms are 1.
In a heuristic approach, we treat the sequences σ

(0)
i in (13) as if they

were random objects. At this we can show that the probability for the
underlying NLFSR to be friendly or almost friendly converges to 1 as N
goes to infinity. For instance, for N = 28, we obtain the probability 0.93.

Theorem 5. Under the provisions of Theorem 4 and the additional as-
sumption that at least one of the underlying NLFSRs is friendly, we have

mστ =
∏

1≤i≤a
1≤j≤b+l

(fi ∨ gj)2
∏

a+1≤i≤a+k
1≤j≤b

(fi ∨ gj)2
∏

a+1≤i≤a+k
b+1≤j≤b+l

(fi ∨ gj),

and, consequently,

L(στ) = L(σ)L(τ)− 2 deg
(√

gcd(mσ,m′
σ)

)
deg

(√
gcd(mτ ,m′

τ )
)
.

If k = l = 0, or, equivalently, if all factors in (8) and (9) have multiplicity
2, then

L(στ) =
1
2
L(σ)L(τ).

The next corollary is of practical importance.

Corollary 2. Let σ be the output sequence of an almost friendly M -stage
NLFSR of type C or D. Let τ be the output sequence of an almost friendly



N -stage NLFSR of the same type. If L(σ) = 2M − 2, L(τ) = 2N − 2, and
gcd(M − 1, N − 1) = 1, then

1
2

(
2M − 2

) (
2N − 2

)
− 2 ≤ L(στ) ≤ 1

2
(
2M − 2

) (
2N − 2

)
.

Our experimental investigations suggest that the specified conditions
in Corollary 2 are reasonable assumptions, fulfilled by the majority of
type-C and D shift registers. Here is an algorithm to find out whether or
not a NLFSR of type C or D is friendly.

Algorithm.
Given: a NLFSR of type C or D.

1. Produce a nontrivial output sequence σ = (sn)∞n=0 of the shift register.
2. Compute the minimal polynomial mσ.
3. Compute the squarefree part 〈mσ〉 of mσ.
4. Apply the decimation operator D to σ: Dσ = (s2n)∞n=0.
5. Compute the linear complexity L(Dσ) of the decimated sequence Dσ.
6. If L(Dσ) = deg(〈mσ〉), then all σ

(0)
i 6= 0 in (13).

7. Apply the shift operator T to σ: Tσ = (sn+1)∞n=0.
8. Apply the decimation operator to Tσ to produce DTσ.
9. Compute the linear complexity L(DTσ) of the sequence DTσ.

10. If L(DTσ) = deg(〈mσ〉), then σ
(0)
i 6= σ

(1)
i for all 1 ≤ i ≤ a in (13).

Answer: If the premises in (6) and (10) are true then the given NLFSR
is friendly.

The formulæ for the minimal polynomial of the product of two NLFSR
sequences presented above generalize to formulæ for the product of any
finite number of sequences under similar restrictions regarding the lengths
of the shift registers. Results on the termwise addition of sequences are
easily derived. Combining the results on addition and multiplication,
we obtain formulæ for the minimal polynomial of sequences of the form
ω = F (σ1, . . . , σk), where F is any boolean combining function defined
on Fk

2. If none of the individual sequences has a minimal polynomial
containing the factor x−1, then the minimal polynomial of ω is uniquely
determined. Otherwise, it may range over some relatively small range.
By considering the degrees of the minimal polynomials, we obtain the
following two corollaries.

Corollary 3. Let F : Fk
2 → F2 be an arbitrary boolean function given

in its algebraic normal form F (x1, . . . , xk), where k ≥ 1. For each i =



1, . . . , k, let σi be the nontrivial output sequence of an Ni-stage NLFSR of
type A. If gcd(Ni, Nj) = 1 for 1 ≤ i 6= j ≤ k, then the linear complexity
of the sequence ω = F (σ1, . . . , σk) is

L(ω) = F (L(σ1), . . . , L(σk)) (14)

with the understanding that in (14), the polynomial F is evaluated over
the integers.

A formula of the type in (14) was proposed by Rueppel and Staffel-
bach [26, Theorem 3] in the context of LFSR sequences of maximum
period length. They showed that the claim already holds if the lengths
Ni of the LFSRs are distinct, they do not necessarily have to be pairwise
relatively prime like in the nonlinear case.

An alternative proof of Corollary 3 can be derived from Golić [10,
Theorem 5] using the fact that for positive integers a and b the statements
gcd(a, b) = 1 and gcd(2a − 1, 2b − 1) = 1 are equivalent.

The first paper that presented a compact formula for the linear com-
plexity of combined linear feedback shift register sequences is Bryniels-
son [4].

Corollary 4. Let F : Fk
2 → F2 with k ≥ 1 be an arbitrary boolean func-

tion and F (x1, . . . , xk) its algebraic normal form. For each i = 1, . . . , k,
let σi be the nontrivial output sequence of some friendly Ni-stage NLFSR
of type C or D. Assume that gcd(Ni−1, Nj−1) = 1 for 1 ≤ i 6= j ≤ k. If
for each i = 1, . . . , k the minimal polynomial of σi contains only multiple
roots, then the linear complexity of the sequence ω = F (σ1, . . . , σk) is

L(ω) = 2F

(
L(σ1)

2
, . . . ,

L(σk)
2

)
, (15)

where in (15), the polynomial F is evaluated over the integers.

A crucial question for the practical relevance of the results presented
so far is, of course, the actual availability of the discussed NLFSRs. The
situation is not as convenient as in the linear case, where one only has to
grab some primitive polynomial from F2[x] in order to get a reasonable
LFSR. Instead, the NLFSRs discussed here must be found by computer
search. Comparing the number Z(N) in equation (1) with the total num-
ber of nonsingular binary N -stage feedback shift registers given by 2E

with E = 2N−1, one sees that the odds to find “a good” N -stage NLFSR
by a blind random search are roughly 1: 2N .



Only a modest amount of theory is available, at least in the open lit-
erature, that can be used to speed up the search process or narrow down
the search domain to some extent. For instance, one can apply results
concerning the binary complementation and cycle reversal of NLFSR se-
quences as described in Walker [29] and similar things.

Other methods than pure computer search are of high interest. Abra-
ham Lempel derived in [17] a recursive formula for the feedback function
of a shift register producing de Bruijn sequences. From there, it does not
take a genius to arrive at the following result.

Theorem 6. Let F (x0, x1, . . . , xN−1) be the feedback function of some
N -stage NLFSR of type A. Then for any j ∈ {1, 2, . . . , N}

Gj(x0, x1, . . . , xN ) = xN + F (x0 + x1, . . . , xN−1 + xN ) +
N∏

i=1
i6=j

xi

is the feedback function of an (N + 1)-stage NLFSR of type A.

A few remarks on the linear complexity of the output sequences of
the NLFRSs considered in this paper are due. For de Bruijn sequences
produced by an N -stage NLFSR a lower bound for the linear complexity
is known to be 2N−1 + N . See Chan, Games, and Key [5]. It seems
that no nontrivial lower bounds on the linear complexities of the NLFSR
sequences considered here are known. We have carried out extensive
computer calculations to satisfy our curiosity. It turned out that the
maximum possible value for the linear complexity for each shift register
type, as displayed in Table 1, is also the typical value for the linear
complexity.

In analogy to the quoted lower bound for the linear complexity of de
Bruijn sequences one is inclined to anticipate a similar lower bound for the
linear complexity of the NLFSR sequences treated in this paper. However,
this is misleading. We examined more than 100 million NLFSRs of type
A of lengths varying between N = 4 and N = 30, and among them, we
did encounter 28 NLFSRs whose nontrivial output sequences had a linear
complexity smaller than half the period length.

It was conjectered by Rueppel [24], [25], and confirmed by Dai and
Yang [8], and by Meidl and Niederreiter [19] that the linear complexity of
a periodic random sequence (a randomly generated finite bit string that
is then repeated ad infinitum) is close to the period length. Thus our
experiments indicate that the nontrivial output sequences of the NLFSRs



considered in this paper typically share their linear complexity behaviour
with true periodic random sequences.
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