
Status of Achterbahn and Tweaks

Berndt M. Gammel, Rainer Göttfert and Oliver Kniffler

Infineon Technologies AG

81726 Munich

Germany

berndt.gammel@infineon.com

rainer.goettfert@infineon.com

oliver.kniffler@infineon.com

Abstract

We report on the results of computations concerning the linear complexities of the
NLFSRs deployed in Achterbahn’s keystream generator. We outline a probabilis-
tic algorithm for estimating the linear complexities of binary sequences of period
2N − 1. We define Achterbahn-Version 2 whose keystream generator consists of
ten shift registers. We introduce the new combining function. We discuss recent
cryptanalysis results against Achterbahn-Version 1. The last part of the paper is
concerned with hardware optimization of the feedback functions of the deployed
nonlinear primitive shift registers.

Keywords: Stream cipher, NLFSR, linear complexity, probabilistic algorithm,
keystream generator.

1 Introduction

Achterbahn is a binary additive stream cipher. The keystream generator (KSG) of
Achterbahn-Version 1 consists of eight nonlinear primitive binary feedback shift registers
of lengths N between 22 and 31. The KSG of Achterbahn-Version 2 consists of ten
primitive shift registers of lengths between 19 and 32. We call an N -stage feedback
shift register primitive if it produces a sequence of least period 2N − 1 for every nonzero
initial state s0 ∈ F

N
2 = {0, 1}N . Both versions of Achterbahn were designed for 80-bit

secret key size and support initial values up to 80 bits.
The sequences produced by the eight, respectively ten, nonlinear feedback shift reg-

isters (NLFSRs) are combined by a Boolean combining function R : F
8
2 → F2, respec-

tively S : F
10
2 → F2, to produce the keystream ζ = (zn)∞n=0. In reduced Achterbahn

the sequences to be combined are the standard output sequences of the NLFSRs (corre-
sponding to given initial states of the shift registers). The standard output sequence of
a feedback shift register is obtained by emitting the content of the right-most cell D0 of
the shift register at each clock pulse (assuming that the shifts are performed from left
to right).

In full Achterbahn each NLFSR is endowed with a configurable linear feedforward
output function controlled by the secret key and the initial value. The produced output
sequence τ = (tn)∞n=0 is a linear combination of the standard output sequence σ =
(sn)∞n=0 and some shifted versions thereof. For instance, let us assume that tn = sn +
sn+1 + sn+4 for n ≥ 0. We then write τ = f(T)σ, where f ∈ F2[x] is called the filter
polynomial and T denotes the shift operator on the F2-vector space F

∞
2 under termwise

operations on sequences. That is, Tσ = (sn+1)
∞
n=0 for all binary sequences σ = (sn)∞n=0.

In the above example, f(x) = 1 + x + x4.
Notice that if all applied filter polynomials are equal to the constant polynomial

f(x) = 1, the keystream produced by full Achterbahn—under this specific configuration
of the output functions—is identical to the keystream produced by reduced Achter-
bahn. In other words, the KSG of reduced Achterbahn is contained in the KSG of full
Achterbahn as a special case. An implementation of full Achterbahn can, therefore, also
be operated in the reduced Achterbahn mode. A millionaire possessing full Achterbahn
can exchange secret information with a pauper who can only afford low cost reduced
Achterbahn.

2 Linear complexity of the keystream

Any two nonzero standard output sequences of a primitive feedback shift register have
the same minimal polynomial and, therefore, the same linear complexity, which we call
the linear complexity of the shift register.

Throughout this report, we use the following abbreviations. The lengths of the shift
registers are denoted by N1, N2, The linear complexities of the shift registers are
designated by L1, L2, The least periods of the nonzero output sequences of the shift
registers are denoted by P1, P2, Thus, Pi = 2Ni − 1 for all i. A nonzero standard
output sequence of the ith shift register is denoted by σi. The filter polynomials defining
the linear feedforward output functions are denoted by f1, f2, The Boolean com-
bining functions of Achterbahn-Version 1 and Version 2 are designated by R(x1, . . . , x8)
and S(x1, . . . , x10), respectively. The keystream is denoted by ζ = (zn)∞n=0. Thus, for
instance, in the case of reduced Achterbahn-Version 1, we have ζ = R(σ1, . . . , σ8), and
in the case of full Achterbahn-Version 2, ζ = S(f1(T)σ1, . . . , f10(T)σ10).

Suppose we are given t ≥ 1 primitive binary NLFSRs of lengths N1, . . . , Nt and
linear complexities L1, . . . , Lt. Let σ1, . . . , σt be standard output sequences of the t shift
registers corresponding to any nonzero initial states. Let F (x1, . . . , xt) be an arbitrary
Boolean function of t variables. Let ζ = R(σ1, . . . , σt), that is ζ = (zn)∞n=0 with zn =
F (σ1(n), . . . , σt(n)) for n = 0, 1,

If the lengths N1, . . . , Nt of the t shift registers are pairwise relatively prime, then
the linear complexity L(ζ) of ζ can be expressed as

L(ζ) = F (L1, . . . , Lt) (1)

with the understanding that F is now regarded as a function over the integers. For-
mula (1) is well known for primitive LFSRs under less restrictive assumptions on the
lengths of the shift registers [10]. For primitive NLFSRs of pairwise relatively prime
lengths, the formula is implicitly contained in [10, Corollary 6], [9, Theorem 5], and [2,
Theorem 3].

If the lengths of the primitive NLFSRs are not pairwise relatively prime, then equa-
tion (1) does not hold. In this case, F (L1, . . . , Lt) provides only an upper bound for
L(ζ). However, in many cases, it is still possible to derive a reasonable lower bound for
the linear complexity of ζ.

Lemma 1. Let σ1, . . . , σt be nonzero output sequences of primitive binary NLFSRs of
lengths N1, . . . , Nt, respectively, and with linear complexities L1, . . . , Lt, respectively. Let
F (x1, . . . , xt) be a Boolean function of algebraic degree d ≥ 1. A lower bound for the
linear complexity of the sequence ζ = F (σ1, . . . , σt) can be given if the following two
conditions are fulfilled:

1. The algebraic normal form (ANF) of F (x1, . . . , xt) contains a monomial
xi1xi2 · · · xid of degree d for which the corresponding shift register lengths
Ni1 , . . . , Nid are pairwise relatively prime.

2. For all other monomials of degree d, which have the form xi1 · · · xij−1
xkxij+1

· · · xid,
we have gcd(Nij , Nk) = 1.

If both assumptions are true, then

Li1Li2 · · ·Lid ≤ L(ζ). (2)

Proof. We only give a sketch of the proof. See [2] for more details. We first recall some
facts of [11, Chap. 4]. Let f, g, . . . , h be binary polynomials of positive degree and with
nonzero constant terms. Then f ∨ g ∨ · · · ∨ h ∈ F2[x] is defined to be the polynomial
whose roots are the distinct products αβ · · · γ, where α is a root of f , β a root of g,
and γ a root of h. The polynomial f ∨ g ∨ · · · ∨ h is irreducible if and only if the
polynomials f, g, . . . , h are all irreducible and of pairwise relatively prime degrees. In
this case, deg(f ∨ g ∨ · · · ∨ h) = deg(f) deg(g) · · · deg(h).

Let the canonical factorization of the minimal polynomial of σk over F2 be given by

mσk
=

ck
∏

jk=1

hjk
for k = 1, . . . , t.

The polynomials hjk
are distinct binary irreducible polynomials with deg(hjk

) > 1 and
deg(hjk

) divides Nk.
Consider d sequences of {σ1, . . . , σt}. For simplicity of notation, say, σ1, . . . , σd. We

associate to the sequences σ1, . . . , σd the polynomial

f12...d =

c1
∏

j1=1

· · ·

cd
∏

jd=1

(hj1 ∨ · · · ∨ hjd
). (3)

If N1, . . . , Nd are pairwise relatively prime, then f12...d is the minimal polynomial of
the product sequence σ1 . . . σd. In fact, (3) represents the canonical factorization of the
minimal polynomial. Using deg(hj1 ∨· · ·∨hjd

) = deg(hj1) · · · deg(hjd
), we obtain for the

linear complexity of σ1 · · · σd:

L(σ1 · · · σd) = deg(f12...d) =

c1
∑

j1=1

· · ·

cd
∑

jd=1

deg(hj1 ∨ · · · ∨ hjd
)

=

d
∏

k=1

ck
∑

jk=1

deg(hjk
)

 =

d
∏

k=1

L(σk) =

d
∏

k=1

Lk.

This explains why we need the first requirement in the theorem. The second requirement
guarantees that no other products of sequences appearing in ζ = F (σ1, . . . , σt) will cancel
out some irreducible factors of the the polynomial in (3)

In order to assign a numerical value to to lower bound for L(ζ) derived in Lemma 1,
we need to know either the exact numerical values or at least lower bounds for the linear
complexities L1, . . . , Lt of the deployed shift registers.

It should be mentioned that a general nontrivial lower bound for the linear complex-
ity L of a nonzero output sequence of a primitive binary N -stage feedback shift register
is not known. We have, of course, N ≤ L ≤ 2N − 2. The trivial lower bound L = N
is attained if and only if the primitive shift register is linear. For nonlinear primitive
shift registers experimental results show that mostly the upper bound L = 2N − 2 is
attained (in over 50% of our observations). We also observed that occasionally the linear
complexity L drops below the value 2N−1. This happened in 0.00003% of our observa-
tions comprising about 108 primitive NLFSRs. The situation is different compared to
de Bruijn sequences [8], where the linear complexity of the sequence never drops below
the value 2N−1 + N .

Since no nontrivial lower bounds for binary primitive NLFSR-output sequences have
been proved in the literature, we have to roll our sleeves up and determine lower
bounds for the numbers Li by way of computation. We did this in two ways, using
the Berlekamp-Massey algorithm and using a new probabilistic algorithm.

The KSG of Achterbahn-Version 1 consists of eight NLFSRs of lengths N = 22, 23,
25, 26, 27, 28, 29, and 31. For the first three shift registers we found, applying the
Berlekamp-Massey algorithm, L1 = 222 − 13, L2 = 223 − 2, and L3 = 225 − 2. For the
remaining five shift registers we verified that Li ≥ 225.8 for i = 5, . . . , 8, using again
the Berlekamp-Massey algorithm. Using the probabilistic algorithm [5], we found that
with probability > 1− 2−100 all eight NLFSRs have linear complexities L ≥ 2N−1, if N
denotes the length of the shift register.

The KSG of Achterbahn-Version 2 consists of ten primitive NLFSRs of lengths N =
19, 22, 23, 25, 26, 27, 28, 29, 31, and 32. With the Berlekamp-Massey algorithm we
found L1 = 219 −2, L2 = 222 −2, L3 = 223−2, L4 = 225−2, and verified that Li ≥ 225.2

for i = 5, . . . , 10. Using the probabilistic algorithm, we verified for all ten shift registers
that L ≥ 2N−1 with probability of error < 2−100.

We outline the basic ideas of the used probabilistic algorithm. Let us use a primitive
NLFSR of length N = 31 as an example. Let σ = (sn)∞n=0 be any standard output
sequence of the shift register corresponding to a nonzero initial state. We want to verify
that the linear complexity of σ is greater than half the period of σ. The least period of
σ is P = 231 − 1. The polynomial xP − 1 is a characteristic polynomial of σ. We have

x(xP − 1) = x231

− x = x(x − 1)
∏

f irred.
deg(f)=31

f(x),

where the product is extended over all binary irreducible polynomials of degree 31. It
is easily seen that the minimal polynomial mσ of σ does not contain the polynomials
x or x − 1 as factors. Since the minimal polynomial of a periodic sequence divides any
characteristic polynomial of the sequence, we conclude that mσ is the product of distinct
irreducible binary polynomials of degree 31. If mσ contains more than one half of all
irreducible polynomials of degree 31, then we know that the linear complexity of σ must
be greater than half the period of σ.

Given a certain irreducible polynomial f of degree 31, we can check whether or not
f is a factor of mσ in the following way:

1. Compute the polynomial gf (x) = (xP − 1)/f(x);

2. Check whether gf (T)σ 6= 0.

Again, T denotes the shift operator, and 0 represents the zero sequence. The following
lemma is crucial.

Lemma 2. The polynomial f divides mσ if and only if gf (T)σ 6= 0. Furthermore,
gf (T)σ 6= 0 if and only if the first N = deg(f) terms of the sequence τ = gf (T)σ are
not all zero.

Algorithm:

1. Choose at random a binary irreducible polynomial f of degree N = 31.

2. Check whether gf (T)σ 6= 0.

3. Repeat the first two steps k times.

If in all k experiments gf (T)σ 6= 0, then the statement L(ζ) ≥ 2N−1 is true with
probability ≥ 1 − 2−k.

The Boolean combining function S(x1, . . . , x10) for Achterbahn-Version 2, defined in
equation (9) below, has algebraic degree d = 4. The ANF of S contains the following
22 monomials of degree 4:

x1x3x6x8, x1x3x6x9, x1x4x6x8, x1x4x6x9, x1x5x6x8, x1x5x6x9, x2x3x6x8,

x2x3x6x9, x2x4x6x8, x2x4x6x9, x2x5x6x8, x2x5x6x9, x4x5x8x10, x4x5x9x10,

x4x6x7x8, x4x6x7x9, x4x6x8x10, x4x6x9x10, x5x6x7x8, x5x6x7x9, x5x7x8x10,

x5x7x9x10.

(4)

We use Lemma 1 to lower bound L(ζ). The monomial with highest indices satisfying
condition 1 of Lemma 1 is

x4x6x9x10. (5)

The lengths of the corresponding shift registers, N4 = 25, N6 = 27, N9 = 31, N10 = 32,
are pairwise relatively prime. There are exactly two monomials in (4) that overlap with
the monomial in (5) in three positions, namely the monomials

x4x5x9x10 and x4x6x8x10.

We have gcd(N5, N6) = gcd(26, 27) = 1 and gcd(N8, N9) = gcd(29, 31) = 1. Thus
condition 2 in Lemma 1 is satisfied. Using Li ≥ 2Ni−1 for i = 1, . . . , 10, we conclude
that

L(ζ) ≥ L4L6L9L10 > 224 · 226 · 230 · 231 = 2111.

Those of us who only trust results derived by the application of a deterministic algorithm,
can use Li ≥ 225.2. It then follows that

L(ζ) > 2100.

Otherwise we can use the afore mentioned results derived by the described probabilistic
algorithm.

Theorem 1. The linear complexity of the keystream of Achterbahn-Version 2 satisfies
L(ζ) > 2100 with certainty and L(ζ) > 2111 with probability > 1 − 2−100.

3 Definition of Achterbahn-Version 2

The Boolean combining function in the initial proposal of Achterbahn [3] is given by

R(x1, . . . , x8) = x1 + x2 + x3 + x4 + x5x7 + x6x7 + x6x8 + x5x6x7 + x6x7x8. (6)

Johansson, Meier and Muller [6] described two attacks against Achterbahn exploiting
certain weaknesses of R. We responded in posting the following “improved combining
functions” at the eSTREAM page [4]

R′(x1, . . . , x8) = R(x1, . . . , x8) + x5x6 + x5x8 + x7x8. (7)

and

R′′ = x1 + x2 + x3 +
∑

4≤i<j≤8

xixj +
∑

4≤i<j<k≤8

xixjxk +
∑

4≤i<j<k<l≤8

xixjxkxl. (8)

Although the functions R′ and R′′ were meant as examples and never declared to be
successor functions for R, in a recent report [7], Johansson, Meier and Muller demon-
strated that Achterbahn with its initial combining function replaced by R′ or R′′ can
also be broken.

Before we discuss the attacks found in [7] in detail, we make some general observa-
tions regarding desired properties of combining functions to be used in NLFSR-based
combining generators, like the KSG of Achterbahn.

3.1 Some general remarks

A joint weakness of the three combining functions R, R′ and R′′ is that they all contain
several variables linearly. This fact was exploited in the first attack in [6] and in the
TMO-attack in [7] as well.

The following argument shows why variables should not appear linearly. Consider
the function R(x1, . . . , x8) in (6) and the polynomial

g(x) = (xP1 − 1)(xP2 − 1)(xP3 − 1)(xP4 − 1),

where Pi = 2Ni − 1 are the periods of the shift register output sequences σ1, . . . , σ4.
The polynomial g(x) is a characteristic polynomial of σ = σ1 + σ2 + σ3 + σ4, that is
g(T)σ = 0. Therefore, if we apply the linear operator g(T) to the keystream

ζ = σ1 + σ2 + σ3 + σ4 + σ5σ7 + σ6σ7 + σ6σ8 + σ5σ6σ7 + σ6σ7σ8,

we obtain
g(T)ζ = g(T)(σ5σ7 + σ6σ7 + σ6σ8 + σ5σ6σ7 + σ6σ7σ8),

a sequence depending only on the states of the last four shift registers.
Even in the case when a variable does not appear linearly in the ANF of a Boolean

function, but still with low degree, the influence of the corresponding shift register can

be undone by applying the linear operator g(T) to the keystream, were g is sparse and
has relatively small degree. For instance, if F (x1, x2, x3, x4) = x1x2 + x2x3 + x1x3x4,
the sequence τ = g(T)ζ is independent of σ2 (and thus, independent of the contents of
the second shift register) for

g(x) = (xP1P2 − 1)(xP2P3 − 1).

Therefore, another requirement for the Boolean function should be that it contains each
variable in a monomial of maximal degree.

Yet another important rule is that for each variable there exists a monomial in the
ANF of the function which has maximum degree and has the property that the shift
register lengths corresponding to the variables in that monomial are pairwise relatively
prime. The last requirement implies that no polynomial of small degree (compared to
the linear complexity of the keystream) exists—dense or sparse—that could cancel out
the influence of one or several shift registers, when applied to the keystream in the above
sense.

3.2 The combining function

While most attacks in [7] could easily be avoided by making sure that the used Boolean
function has maximum nonlinearity (for the given order of resiliency) and contains all
of its variables in a monomial of maximum degree, there is one attack described in [7]
which is quite aggressive. In this attack one guesses the content of one shift register
and uses a linear approximation as a mean to confirm or reject the guess. The authors
use only linear approximations in [7]. However, if we also take into account quadratic
and cubic approximations in combination with the described guessing trick, we see that
Achterbahn-Version 1 can always be successfully attacked no matter what Boolean com-
bining function has been chosen. The reason is that the small number of eight variables
imposes a severe restriction to the order of correlation immunity and nonlinearity of the
function.

In order to avert attacks based on quadratic approximations, we need a combining
function of ten variables. As a consequence, the KSG of Achterbahn-Version 2 will
consist of ten primitive NLFSRs.

The combining function for Achterbahn-Version 2 is given by

S(x1, . . . , x10) = x1 + x2 + x3 + x9 + G(x4, x5, x6, x7, x10)

+ (x8 + x9)(G(x4, x5, x6, x7, x10) + H(x1, x2, x3, x4, x5, x6, x7, x10))
(9)

with
G(x4, x5, x6, x7, x10) = x4(x5 ∨ x10) + x5(x6 ∨ x7) + x6(x4 ∨ x10)

+ x7(x4 ∨ x6) + x10(x5 ∨ x7)

and
H(x1, x2, x3, x4, x5, x6, x7, x10) = x2 + x5 + x7 + x10 + (x3 + x4)x̄6

+ (x1 + x2)(x3x̄6 + x6(x4 + x5)),

where a ∨ b = a + b + ab and ā = a + 1 for a, b ∈ F2.
Function S has resiliency 5 and nonlinearity 448. The ANF of S contains 77 mono-

mials, 22 thereof have degree 4. The function can be implemented in hardware with 63
GE. Each of the ten variables of S appears in a monomial of degree 4.

Since S has ten variables, we need another two NLFSRs. We choose shift registers
of lengths 19 and 32.

Tweak: The KSG of Achterbahn-Version 2 consists of ten primitive binary NLFSRs
of lengths 19, 22, 23, 25, 26, 27, 28, 29, 31, and 32. The maximum degrees of the
corresponding filter polynomials describing the linear feedforward output functions of
full Achterbahn are 3, 3, 3, 5, 6, 7, 8, 9, 10, 10.

Theorem 2. The keystream ζ produced by the KSG of reduced Achterbahn-Version 2,
as well as all 264 translation distinct keystream sequences produced by full Achterbahn-
Version 2, have least period

Per(ζ) =
1

135

10
∏

i=1

(

2Ni − 1
)

> 2254.

Consider the 22 monomials in (4). Each of the ten variables x1, . . . , x10 appears in
at least one monomial for which the corresponding shift register lengths are pairwise
relatively prime. Due to this property and the verified fact that Li ≥ 2Ni−1 for i =
1, . . . , 10, the following theorem can be proved.

Theorem 3. Let ζ be a keystream produced by reduced or full Achterbahn-Version 2.
For each polynomial g ∈ F2[x] with deg(g) < 280, the sequence τ = g(T)ζ depends on all
ten NLFSRs.

3.3 Cryptanalysis of Achterbahn-Version 1

We now compare the complexities of all attacks described in [7] that were successfully
applied against Achterbahn-Version 1 with combining functions R, R′, or R′′ with the
complexity of the attack against Achterbahn-Version 2 with combining function S.

The attack described in [7, Sec. 4] makes use of the the fact that the function
R(x1, . . . , x8) in (6) becomes linear for x5 = x6 = 0. The lengths of the corresponding
shift registers are 27 and 28, which are the relevant parameters for the complexity of
the attack. The complexity is O(227+28+1) = O(256) for reduced and O(273) for full
Achterbahn-Version 1. The function S(x1, . . . , S10) in (9) becomes only linear if we set
at least five of the variables x4, x5, x6, x7, x8, x9, x10 to constant values. Thus the length
of the shift registers and the maximum degrees of the filter polynomials corresponding
to the five variables that cause S to become linear are relevant for the complexity of this
attack. We obtain the complexities O(2139) and O(2176) for reduced and full Achterbahn-
Version 2, respectively.

The attack described in [7, Sec. 5] is a distinguishing attack, which exploits the fact
that R(x1, . . . , x8) can be approximated by a linear function of eight variables containing
five nonzero terms with probability 3/4. The attack requires the examination of 264

keystream bits. The Boolean function S(x1, . . . , x10) can at best be approximated by a
linear function containing six nonzero terms and with probability 9/16. It follows that
in order to detect the bias, O(2384) keystream bits are necessary. As the keystream ζ of
Achterbahn-Version 2 has least period < 2255, the attack does not make sense.

The attack described in [7, Sec. 5.3] and [7, Sec. 7] is the most threatening attack
in [7]. In Section 5.3, the function R(x1, . . . , x8) is attacked. Function R agrees with

L(x1, . . . , x8) = x1 + x2 + x3 + x4 + x6 (10)

with probability p = 3
4 = 1

2(1+ 1
2) = 1

2(1+ε). The attacker guesses the first register. This
step has complexity O(222). By guessing the first register, the approximation in (10)
reduces from five to four nonzero terms. Consider the polynomial

g(x) = (xP2 − 1)(xP3 − 1)(xP4 − 1)(xP6 − 1).

The sequence τ = g(T)ζ is the sum if 16 shifted versions of ζ. The bias for the sequence
τ therefore is

ε16 =

(

1

2

)16

= 2−16.

To take advantage of the bias one has to examine 232 keystream bits. Altogether, the
complexity of the attack is 222 · 232 = 254 for reduced and 260 for full Achterbahn-
Version 1.

The same method is used to attack R′′ in [7, Sec. 7]. The time complexities of the
attack against Achterbahn-Version 1 with R′′ are O(270) for the reduced, and O(276) for
the full version.

If we apply the attack to Achterbahn-Version 2, we observe that the best linear
approximation to S has six nonzero terms and agrees with S with probability 9/16.
This yields the complexity O(2211), respectively O(2214) if the attacker guesses the first
register. A better strategy is to guess the contents of the first two registers. This attack
has complexity O(2137) for reduced and O(2143) for full Achterbahn-Version 2. The best
strategy consists in guessing the first three registers, which yields complexities O(2112)
and O(2121).

The attack described in [7, Sec. 6.1] against R′ takes advantage of the fact that R′

contains the first four variables only linearly. The other four variables appear in the
nonlinear part of R′. These four variables correspond to the last four shift registers
which together can store 115 bits. A TMO-attack is described with time complexity
257.5 requiring 257.5 keystream bits.

The Boolean combining function S in Achterbahn-Version-2 does not depend linearly
of any of its ten variables. Thus the nonlinear part of S coincides with the entire internal
state of the KSG which has 262 bits. The complexity of the above attack is comparable
with the complexity of a classical TM0-attack which here has time and data complexity
2131.

The attack described in [7, Sec. 6.2] against full Achterbahn-Version 1 makes use of
the fact that the function R′ reduces to the affine function L = x1 +x2 +x3 +x4 +x7 +1
if the variables x5 and x6 are both set to 1. The attack requires some more keystream
bits (approximately 245) than the attack described in [7, Sec. 4]. Otherwise the attacks
are identical. The time complexity of the attack is O(273), since the lengths of the
shift registers corresponding to variables x5 and x6 are 27 and 28. The maximum
degrees of the corresponding filter polynomials are 8 and 9, respectively. This yields
27 + 28 + 8 + 9 + 1 = 73, the exponent in the complexity estimation. The same attack
applied to Achterbahn-Version 2 has time complexity O(2176).

3.4 Quadratic approximations

Quadratic approximation attacks seem to be more threatening to our stream cipher than
correlation attacks based on linear approximations. To estimate the threat, we have
to consider all quadratic functions of ten variables which have a nonzero correlation
coefficient with S(x1, . . . , x10). The most threatening approximation is given by the
quadratic function

Q(x1, . . . , x10) = x1 + x2 + x3x4 + x6x10, (11)

which agrees with S with probability

33

64
=

1

2

(

1 +
1

32

)

=
1

2
(1 + ε).

If we guess the first two registers of lengths N1 = 19 and N2 = 22, we have only two
summands left in (11). The bias of the appropriately filtered keystream sequence is
ε4 = 2−20, so that 240 keystream bits must be processed in order to confirm the guess.
The overall complexity of the attack is 219 · 222 · 240 = 281, still above the complexity of
exhaustive key search.

3.5 Cubic approximations

The most threatening cubic approximation is given by

C(x1, . . . , x10) = x4 + x6x9 + x1x2x3, (12)

which agrees with S with probability

63

128
=

1

2

(

1 −
1

64

)

=
1

2
(1 + ε).

We guess the the content of the fourth shift register, whose length is N4 = 25. The
terms of the sequence τ = g(T)ζ, where

g(x) = (xP6P9 − 1)(xP1P2P3 − 1),

are biased with ε4 = 2−24. Thus the time complexity to determine the contents of
fourth shift register is O(273) and below the complexity of exhaustive key search. The
degree of the polynomial g in (12) is greater than 263. The attacker needs more than
263 keystream bits in order to run the attack. We counter such an attack by restricting
the maximum frame length for our stream cipher to 263 bits.

Tweak: The maximum length of a frame that can be used in the encryption process
for Achterbahn-Version 2 is 263 bits.

4 Hardware tweaks

In this section we show how the feedback logics of the driving NLFSRs can be improved
with regard to their hardware efficiencies. The goals are:

— to reduce the gate count;

— to increase the frequency at which Achterbahn can be operated.

Both goals can be achieved without sacrificing security.
In the following, the design size is given in gate equivalents. One gate equivalent (GE)

is the design size of a 2-input NAND gate. The reported figures have been derived from
a synthesis of Achterbahn using high level description language VHDL and mapping the
design on 130 nm CMOS standard cell library.

The design size of the KSG can be divided into the following four parts (compare 2):

1. The memory cells including one multiplexor per memory cell for the parallel key-
loading.

2. The feedback logics of the ten NLFSRs.

3. The logic that implements the Boolean combining function.

4. The control logic.

How can we save hardware? We cannot shorten the lengths of the shift registers
or use a sparser Boolean combining function without lowering the security level, nor
can we reduce the control logic. However, there is room for savings in the circuits that
implement the feedback functions of the shift registers.

4.1 Reducing the implementation costs of the feedback functions

In this section we describe a way how the implementation costs of the feedback functions
can be reduced and at the same time the clock rates for the shift registers increased.
The average design size of the feedback functions of the eight driving NLFSRs in the
initial proposal of Achterbahn was 42.75 GE. This average value can be reduced to 24.7
GE per shift register in Achterbahn-Version 2.

The objective is to reduce the implementation costs of the feedback functions with-
out thinning out their algebraic normal forms. This is important because a very sparse
algebraic normal form would increase the required number of warm-up shifts in the last
step of the key-loading algorithm and, thereby, extend resynchronization times. Con-
sidering that in many applications the resynchronization intervals are relatively short,
this would not be acceptable. Besides, a very sparse feedback function provides less
resistance against algebraic attacks [1] than a function of moderate sparsity does.

The objective is achieved by choosing primitive NLFSRs whose feedback functions
can be implemented using less expensive gates. Also, 3-input gates are more efficient
than 2-input gates. Table 1 lists the hardware costs for the implementation of various
logical operations.

HW-Tweak: The initial feedback functions of the NLFSRs are replaced by more effi-
cient feedback functions. The new feedback functions can be implemented at approx-
imately half the hardware costs of the old ones and each function has logical depth
three.

For the sake of illustration, let us consider the new NLFSR A. Its feedback function
is given by

A(x0, x1, . . . , x18) = XOR(XOR(x0, x3,MUX(x5, x1;x6)),XOR(x8, x12,NAND(x4, x7)),

MUX(NAND(x9, x11),MUX(x6, x10;x4);MUX(x2, x10;x9))).

Logical operation Binary function Hardware cost

NAND(a, b) ab + 1 1.00 GE

NOR(a, b) 1 + a + b + ab 1.00 GE

AND(a, b) ab 1.25 GE

OR(a, b) a + b + ab 1.25 GE

XOR(a, b) a + b 2.25 GE

NAND(a, b, c) abc + 1 1.25 GE

NOR(a, b, c) 1 + a + b + c + ab + ac + bc + abc 1.50 GE

AND(a, b, c) abc 1.50 GE

OR(a, b, c) a + b + c + ab + ac + bc + abc 1.75 GE

XOR(a, b, c) a + b + c 4.00 GE

MAJ(a, b, c) ab + ac + bc 2.25 GE

MUX(a, b; c) a + ac + bc 2.50 GE

Table 1: Hardware costs of logical operations

The algebraic normal form of the feedback function is

A(x0, x1, . . . , x18) = x0 + x2 + x3 + x5 + x8 + x12 + x1x6 + x2x6 + x2x9

+ x4x7 + x5x6 + x9x10 + x9x11 + x2x4x6 + x2x4x10

+ x2x6x9 + x4x9x10 + x6x9x10 + x9x10x11

+ x2x4x6x9 + x2x4x9x10 + x4x6x9x10.

The implementation costs for the feedback function A(x0, x1, . . . , x18) are 24 GE. A
switching circuit for shift register A is shown in Figure 1. Shift register A has linear
complexity 219 − 2.

D
0

D
1

D
2

D
3

D
4

D
5

D
7

D
6

D
8

D
9

D
10

D
12

D
11

D
13

D
15

D
14

D
16

D
18

D
17

1

0

1

0

0

1

0

1

Figure 1: Switching circuit for the new NLFSR A

Version 1 Version 2 Version 2

with DPA with DPA without DPA

protection protection protection

Memory 1002 GE 1245 GE 1245 GE

DPA counter measure 528 GE 655 GE —

Feedback functions 342 GE 247 GE 247 GE

Combining function 13 GE 63 GE 63 GE

Control logic 288 GE 298 GE 323 GE

Total 2173 GE 2508 GE 1878 GE

Table 2: Design sizes of reduced Achterbahn: Version 1 and Version 2

4.2 Design sizes of parallel implementations of Achterbahn-Version 2

Like the initial NLFSRs of Achterbahn, the new shift registers were chosen in order to fa-
cilitate parallel implementations of the KSG. While in a straightforward implementation
of the KSG, one bit of keystream is produced per clock cycle, in the parallel implementa-
tions two, four, or eight keystream bits are generated per clock cycle. We list the design
sizes of the parallel implementations of the KSG for reduced Achterbahn in Table 3.
For the sake of comparison, we also list the design sizes of Achterbahn-Version 1. The
table contains also the hardware efficiencies of the various implementations. This is the
number of keystream bits produced per clock cycle divided by the design size in units
of 1000 GE.

Besides the implementations in which countermeasures against the leakage of side
channel information are taken (in Table 3 referred to as “Achterbahn with DPA pro-
tection”), we also include the design sizes of implementations in which no such counter
measures are implemented (in the table referred to as “Achterbahn without DPA pro-
tection”).

Recall the first part of Achterbahn’s key-loading algorithm. In this part all memory
cells of the KSG are loaded simultaneously with key bits. The first register, for instance,
receives the 19 key bits k0, k1, . . . , k18, and the last register, of length 32, the key bits
k0, k1, . . . , k31. In the next step, the remaining key bits and IV bits are fed serially into
the shift registers via an XOR gate in the feedback loop of each shift register. In the
third step, the content of one cell of each shift register is overwritten with the bit 1
so that no shift register can be in the all-zero state thereafter. In the last step of the
key-loading algorithm, each shift register performs a certain number of warm-up shifts
for diffusion purposes.

The intent of the parallel key-loading in step 1 is to avoid the leakage of side channel
information in the initialization phase and during resynchronization. Unfortunately, one
has to pay a relatively high price in hardware for this feature, to be precise: 655 GE for
262 multiplexors.

In some applications, protection against side channel attacks is not required. For
such applications, we can implement the KSG using flip-flops (without reset-capability)
which cost 4.75 GE rather than the more expensive scan flip-flops (7.25 GE). The task

of the first step of the key-loading algorithm is now accomplished by inserting the key
bits serially into each shift register. Contrary to step 2, in this step no feedback values
are added to the introduced key bits. The possibility to disable the feedback logic costs
one extra multiplexor per shift register resulting in an increase of the control logic by
25 GE. Thus the total saving amounts to 630 GE. See Table 2.

Achterbahn- Achterbahn- Achterbahn-

Version 1 with Version 2 with Version 2 without

DPA protection DPA protection DPA protection

Design Hardware Design Hardware Design Hardware

size efficiency size efficiency size efficiency

1-bit impl. 2173 GE 0.46 2508 GE 0.40 1878 GE 0.53

2-bit impl. 2412 GE 0.83 2820 GE 0.71 2188 GE 0.91

4-bit impl. 3113 GE 1.28 3852 GE 1.04 3274 GE 1.22

8-bit impl. 4778 GE 1.67 4888 GE 1.64 4386 GE 1.82

Table 3: Design size and hardware efficiency of parallel implementations of reduced
Achterbahn

5 Conclusion

We reported on the results of our computations concerning the linear complexities of the
initial and the new NLFSRs constituting the core of Achterbahn’s KSG. We outlined
a new probabilistic algorithm for estimating the linear complexities of primitive binary
NLFSRs. We described tweaks on Achterbahn-Version 1 as specified in [3] that led
to Achterbahn-Version 2. The reported cryptanalytic attacks of Johansson, Meier and
Muller [7] were discussed and it was shown that the four attacks described in [7] are either
not feasible against Achterbahn-Version 2 or have complexities above the complexity of
exhaustive key search. We introduced new feedback functions of the shift registers
that are more efficient in hardware. All feedback functions now have logical depth
three. Properties of the Boolean combining function S for Achterbahn-Version 2 were
discussed. The design sizes and hardware efficiencies for the parallel implementations
of reduced Achterbahn were updated.

Acknowledgment: We wish to thank Thomas Johansson for sending us a copy of
the preprint [7], which drew our attention to the potential threats arising from the
combination of divide and conquer attacks with correlation attacks.

References

[1] N. Courtois and W. Meier: Algebraic attacks on stream ciphers with linear feedback,
Advances in Cryptology – EUROCRYPT 2003 (E. Biham, ed.), Lecture Notes in
Computer Science, vol. 2656, pp. 345–359, Springer-Verlag, 2003.

[2] B. M. Gammel and R. Göttfert: Linear filtering of nonlinear shift register sequences,
Proc. of The International Workshop on Coding and Cryptography WCC ’2005
(Bergen, Norway, 2005), P. Charpin and Ø. Ytrehus, eds., pp. 117-126.

[3] B. M. Gammel, R. Göttfert, and O. Kniffler: The Achterbahn stream cipher,
eSTREAM, ECRYPT Stream Cipher Project, Report 2005/002, 29 April 2005.
http://www.ecrypt.eu.org/stream/papers.html

[4] B. M. Gammel, R. Göttfert, and O. Kniffler: Improved Boolean combining functions
for Achterbahn, eSTREAM, ECRYPT Stream Cipher Project, Report 2005/072,
14 October 2005. http://www.ecrypt.eu.org/stream/papers.html

[5] R. Göttfert: A probabilistic algorithm to determine the linear complexity of a
periodic sequence of period qn − 1, manuscript, Oct. 2005.

[6] T. Johansson, W. Meier, and F. Muller: Cryptanalysis of Achterbahn, eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/064, 27 September 2005.
http://www.ecrypt.eu.org/stream/papers.html

[7] T. Johansson, W. Meier, and F. Muller: Cryptanalysis of Achterbahn, Preprint,
Jan. 2006.

[8] A. H. Chan, R. A. Games, and E. L. Key: On the complexities of de Bruijn se-
quences, J. Combin. Theory Ser A 33, 233–246 (1982).

[9] J. Dj. Golić: On the linear complexity of functions of periodic GF(q) sequences,
IEEE Trans. Inform. Theory 35, 69–75 (1989).

[10] R. A. Rueppel and O. J. Staffelbach: Products of linear recurring sequences with
maximum complexity, IEEE Trans. Inform. Theory IT-33, 124–131 (1987).

[11] E. S. Selmer: Linear Recurrence Relations over Finite Fields, Univ. of Bergen, 1966.

[12] T. Siegenthaler: Correlation-immunity of nonlinear combining functions for cryp-
tographic applications, IEEE Trans. Inform. Theory IT-30, 776–780, 1984.

